Analysis: Algorithms and Data Structures

- We need a vocabulary to discuss performance and to reason about alternative algorithms and implementations
 - It’s faster! It’s more elegant! It’s safer! It’s cooler!

- We need empirical tests and analytical/mathematical tools
 - Given two methods, which is better? Run them to check.
 - 30 seconds vs. 3 seconds, easy. 5 hours vs. 2 minutes, harder
 - What if it takes two weeks to implement the methods?
 - Use mathematics to analyze the algorithm,
 - The implementation is another matter, cache, compiler optimizations, OS, memory, ...

Recursion and recurrences

- Why are some functions written recursively?
 - Simpler to understand, but ...
 - Mt. Everest reasons

- Are there reasons to prefer iteration?
 - Better optimizer: programmer/scientist v. compiler
 - Six of one? Or serious differences
 - “One person’s meat is another person’s poison”
 - “To each his own”, “Chacun a son gout”, ...

- Complexity (big-Oh) for iterative and recursive functions
 - How to determine, estimate, intuit

What’s the complexity of this code?

```c
// first and last are integer indexes, v is vector
int lastIndex = first;
int pivot = v[first];
for(int k=first+1; k <= last; k++){
    if (v[k] <= pivot){
        lastIndex++;
        swap(v,lastIndex,k);
    }
}
```

- What is big-Oh cost of a loop that visits \(n \) elements of a vector?
 - Depends on loop body, if body \(O(1) \) then ...
 - If body is \(O(n) \) then ...
 - If body is \(O(k) \) for \(k \) in \([0..n]\) then ...

FastFinder::findHelper

```c
int find(int kindex, tvector<int>&v, int first, int last)
// pre: kindex-th element of v in range v[first]..v[last]
// post: return kindex-th element of v, (0-th is smallest)
{
    int lastIndex = first;
    int pivot = v[first];
    for(int k=first+1; k <= last; k++){
        if (v[k] <= pivot){
            lastIndex++;
            swap(v,lastIndex,k);
        }
    }
    swap(v,lastIndex,first);
    if (lastIndex == kindex) return v[lastIndex];
    if (kindex < lastIndex ) return find(kindex,v,first,lastIndex);
    return find(kindex, v,lastIndex+1,last);
}
```

- FastFinder::findHelper
 - int find(int kindex, tvector<int>&v, int first, int last)
 - // pre: kindex-th element of v in range v[first]..v[last]
 - // post: return kindex-th element of v, (0-th is smallest)
 - { int lastIndex = first;
 int pivot = v[first];
 for(int k=first+1; k <= last; k++){
 if (v[k] <= pivot){
 lastIndex++;
 swap(v,lastIndex,k);
 }
 }
 swap(v,lastIndex,first);
 if (lastIndex == kindex) return v[lastIndex];
 if (kindex < lastIndex) return find(kindex,v,first,lastIndex);
 return find(kindex, v,lastIndex+1,last);
 }
Different measures of complexity

- **Worst case**
 - Gives a good upper-bound on behavior
 - Never get worse than this
 - Drawbacks?

- **Average case**
 - What does average mean?
 - Averaged over all inputs? Assuming uniformly distributed random data?
 - Drawbacks?

- **Best case**
 - Linear search, useful?

Multiplying and adding big-Oh

- Suppose we do a linear search then we do another one
 - What is the complexity?
 - If we do 100 linear searches?
 - If we do n searches on a vector of size n?

- What if we do binary search followed by linear search?
 - What are big-Oh complexities? Sum?
 - What about 50 binary searches? What about n searches?

- What is the number of elements in the list (1,2,2,3,3,3)?
 - What about (1,2,2, ..., n,n,...,n)?
 - How can we reason about this?

Helpful formulae

- We always mean base 2 unless otherwise stated
 - What is \(\log(1024) \)?
 - \(\log(xy) = \log(x) + \log(y) \)
 - \(\log(2^n) = 2(\log n) \)
 - \(y \log(x) \)
 - \(n\log(2) = n \)
 - \(2(\log n) = n \)

- Sums (also, use sigma notation when possible)
 - \(1 + 2 + 4 + 8 + \ldots + 2^k = 2^{k+1} - 1 = \sum_{i=0}^{k} 2^i \)
 - \(1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} = \sum_{i=1}^{n} i \)
 - \(a + ar + ar^2 + \ldots + ar^{n-1} = a(r^n - 1)/(r-1) = \sum_{i=0}^{n-1} ar^i \)

Recursion Review

- Recursive functions have two key attributes
 - There is a base case, sometimes called the exit case, which does not make a recursive call
 - All other cases make recursive call(s), the results of these calls are used to return a value when necessary
 - Ensure that every sequence of calls reaches base case
 - Some measure decreases/moves towards base case
 - “Measure” can be tricky, but usually it’s straightforward

- Example: sequential search in a vector
 - If first element is search key, done and return
 - Otherwise look in the “rest of the vector”
 - How can we recurse on “rest of vector”?
Sequential search revisited

- What is complexity of sequential search? Of code below?

```cpp
bool search(tvector<string>& v, int first, const string& target)
{
    if (first >= v.size()) return false;
    else if (v[first] == target) return true;
    else return search(v, first+1, target);
}
```

- Why are there three parameters? Same name good idea?

```cpp
bool search(tvector<string>& v, string target)
{
    return search(v, 0, target);
}
```

Why we study recurrences/complexity?

- Tools to analyze algorithms
- Machine-independent measuring methods
- Familiarity with good data structures/algorithms

- What is CS person: programmer, scientist, engineer? *scientists build to learn, engineers learn to build*

- Mathematics is a notation that helps in thinking, discussion, programming

Recurrences

- Counting nodes

```cpp
int length(Node * list)
{
    if (0 == list) return 0;
    else return 1 + length(list->next);
}
```

- What is complexity? justification?

- T(n) = time to compute length for an n-node list

```latex
T(n) = T(n-1) + 1
T(0) = 1
\]
```

- instead of 1, use O(1) for constant time

> independent of n, the measure of problem size

Solving recurrence relations

- plug, simplify, reduce, guess, verify?

```latex
T(n) = T(n-1) + 1
T(0) = 1
T(n-1) = T(n-1-1) + 1
T(n) = (T(n-3) + 1) + 1 = T(n-3) + 3
```

- find the pattern!

Now, let k=n, then T(n) = T(0)+n = 1+n

- get to base case, solve the recurrence: O(n)
Complexity Practice

- What is complexity of `Build`? (what does it do?)

```c
Node * Build(int n) {
    if (0 == n) return 0;
    Node * first = new Node(n, Build(n-1));
    for (int k = 0; k < n-1; k++) {
        first = new Node(n, first);
    }
    return first;
}
```

- Write an expression for $T(n)$ and for $T(0)$, solve.

Recognizing Recurrences

- Solve once, re-use in new contexts
 - T must be explicitly identified
 - n must be some measure of size of input/parameter
 - $T(n)$ is the time for quicksort to run on an n-element vector

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Recurrence</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>quicksort</td>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>binary search</td>
<td>$T(n) = T(n/2) + O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>sequential search</td>
<td>$T(n) = T(n-1) + O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>tree traversal</td>
<td>$T(n) = 2T(n/2) + O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>selection sort</td>
<td>$T(n) = T(n-1) + O(n)$</td>
<td>$O(n \log n)$</td>
</tr>
</tbody>
</table>

- Remember the algorithm, re-derive complexity

Changing a linked list recursively

- Pass list to function, return altered list, assign to passed param

```c
list = Change(list, "apple");
Node * Change(Node * list, const string& key) {
    if (list != 0) {
        list->next = Change(list->next, key);
        if (list->info == key) return list->next;
        else return list;
    }
    return 0;
}
```

- What does this code do? How can we reason about it?
 - Empty list, one-node list, two-node list, n-node list
 - Similar to proof by induction

Eugene (Gene) Myers

- Lead computer scientist/software engineer at Celera Genomics (now at Berkeley)
- "What really astounds me is the architecture of life. The system is extremely complex. It's like it was designed." ... "There's a huge intelligence there."