We need a vocabulary to discuss performance and to reason about alternative algorithms and implementations
- It’s faster! It’s more elegant! It’s safer! It’s cooler!

We need empirical tests and analytical/mathematical tools
- Given two methods, which is better? Run them to check.
 - 30 seconds vs. 3 seconds, easy. 5 hours vs. 2 minutes, harder
 - What if it takes two weeks to implement the methods?
- Use mathematics to analyze the algorithm,
- The implementation is another matter, cache, compiler optimizations, OS, memory,...
Recursion and recurrences

- **Why are some functions written recursively?**
 - Simpler to understand, but ...
 - Mt. Everest reasons

- **Are there reasons to prefer iteration?**
 - Better optimizer: programmer/scientist v. compiler
 - Six of one? Or serious differences
 - “One person’s meat is another person’s poison”
 - “To each his own”, “Chacun a son gout”, ...

- **Complexity (big-Oh) for iterative and recursive functions**
 - How to determine, estimate, intuit
What’s the complexity of this code?

// first and last are integer indexes, v is vector
int lastIndex = first;
int pivot = v[first];
for(int k=first+1; k <= last; k++){
 if (v[k] <= pivot){
 lastIndex++;
 swap(v,lastIndex,k);
 }
}

- **What is big-Oh cost of a loop that visits \(n \) elements of a vector?**
 - Depends on loop body, if body \(\mathcal{O}(1) \) then ...
 - If body is \(\mathcal{O}(n) \) then ...
 - If body is \(\mathcal{O}(k) \) for \(k \) in \([0..n)\) then ...
FastFinder::findHelper

int find(int kindex, tvector<int>&v,
 int first, int last)
// pre: kindex-th element of v in range v[first]..v[last]
// post: return kindex-th element of v, (0th is smallest)
{
 int lastIndex = first;
 int pivot = v[first];
 for(int k=first+1; k <= last; k++){
 if (v[k] <= pivot){
 lastIndex++;
 swap(v,lastIndex,k);
 }
 }
 swap(v,lastIndex,first);
 if (lastIndex == kindex) return v[lastIndex];
 if (kindex < lastIndex) return find(kindex,v,first,lastIndex);
 return find(kindex, v,lastIndex+1,last);
}
Different measures of complexity

- **Worst case**
 - Gives a good upper-bound on behavior
 - Never get worse than this
 - Drawbacks?

- **Average case**
 - What does average mean?
 - Averaged over all inputs? Assuming uniformly distributed random data?
 - Drawbacks?

- **Best case**
 - Linear search, useful?
Multiplying and adding big-Oh

- Suppose we do a linear search then we do another one
 - What is the complexity?
 - If we do 100 linear searches?
 - If we do \(n \) searches on a vector of size \(n \)?

- What if we do binary search followed by linear search?
 - What are big-Oh complexities? Sum?
 - What about 50 binary searches? What about \(n \) searches?

- What is the number of elements in the list \((1,2,2,3,3,3) \)?
 - What about \((1,2,2, \ldots, n,n,\ldots,n) \)?
 - How can we reason about this?
Helpful formulae

- We always mean base 2 unless otherwise stated
 - What is \(\log(1024) \)?
 - \(\log(xy) = \log(x) + \log(y) \)
 - \(\log(x^y) = y \log(x) \)
 - \(\log(2^n) = 2^{(\log n)} \)
 - \(n \log(2) = n \)
 - \(2^{(\log n)} = n \)

- Sums (also, use sigma notation when possible)
 - \(1 + 2 + 4 + 8 + \ldots + 2^k = 2^{k+1} - 1 = \sum_{i=0}^{k} 2^i \)
 - \(1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} = \sum_{i=1}^{n} i \)
 - \(a + ar + ar^2 + \ldots + ar^{n-1} = \frac{a(r^n - 1)}{(r-1)} = \sum_{i=0}^{n-1} ar^i \)
Recursion Review

- **Recursive functions have two key attributes**
 - There is a *base case*, sometimes called the *exit case*, which does not make a recursive call
 - All other cases make recursive call(s), the results of these calls are used to return a value when necessary
 - Ensure that every sequence of calls reaches base case
 - Some measure decreases/moves towards base case
 - “Measure” can be tricky, but usually it’s straightforward

- **Example: sequential search in a vector**
 - If first element is search key, done and return
 - Otherwise look in the “rest of the vector”
 - How can we recurse on “rest of vector”?
Sequential search revisited

- **What is complexity of sequential search? Of code below?**

```cpp
bool search(tvector<string>& v, int first, const string& target)
{
    if (first >= v.size()) return false;
    else if (v[first] == target) return true;
    else return search(v, first+1, target);
}
```

- **Why are there three parameters? Same name good idea?**

```cpp
bool search(tvector<string>& v, string target)
{
    return search(v, 0, target);
}
```
Why we study recurrences/complexity?

- Tools to analyze algorithms
- Machine-independent measuring methods
- Familiarity with good data structures/algorithms

- What is CS person: programmer, scientist, engineer?
 scientists build to learn, engineers learn to build

- Mathematics is a notation that helps in thinking, discussion, programming
Recurrences

• Counting nodes

```c
int length(Node * list)
{
    if (0 == list) return 0;
    else return 1 + length(list->next);
}
```

• What is complexity? justification?

• $T(n) = \text{time to compute length for an n-node list}$

 $T(n) = T(n-1) + 1$
 $T(0) = 1$

• instead of 1, use $O(1)$ for constant time
 ➢ independent of n, the measure of problem size
Solving recurrence relations

- **plug, simplify, reduce, guess, verify?**

\[T(n) = T(n-1) + 1 \]
\[T(0) = 1 \]

\[T(n-1) = T(n-1-1) + 1 \]
\[T(n) = [T(n-2) + 1] + 1 = T(n-2)+2 \]
\[T(n-2) = T(n-2-1) + 1 \]
\[T(n) = [(T(n-3) + 1) + 1] + 1 = T(n-3)+3 \]

\[T(n) = T(n-k) + k \]

find the pattern!

Now, let \(k=n \), then \(T(n) = T(0)+n = 1+n \)

- **get to base case, solve the recurrence: \(O(n) \)**
Complexity Practice

• **What is complexity of Build? (what does it do?)**

```c
Node * Build(int n)
{
    if (0 == n) return 0;
    Node * first = new Node(n, Build(n-1));
    for(int k = 0; k < n-1; k++) {
        first = new Node(n, first);
    }
    return first;
}
```

• **Write an expression for T(n) and for T(0), solve.**
Recognizing Recurrences

- Solve once, re-use in new contexts
 - T must be explicitly identified
 - n must be some measure of size of input/parameter
 - T(n) is the time for quicksort to run on an n-element vector

\[
T(n) = T(n/2) + O(1) \quad \text{binary search} \quad O(\log n)
\]
\[
T(n) = T(n-1) + O(1) \quad \text{sequential search} \quad O(n)
\]
\[
T(n) = 2T(n/2) + O(1) \quad \text{tree traversal} \quad O(n)
\]
\[
T(n) = 2T(n/2) + O(n) \quad \text{quicksort} \quad O(n \log n)
\]
\[
T(n) = T(n-1) + O(n) \quad \text{selection sort} \quad O(n^2)
\]

- Remember the algorithm, re-derive complexity
Changing a linked list recursively

- Pass list to function, return altered list, assign to passed param

```c
list = Change(list, "apple");
Node * Change(Node * list, const string& key)
{
    if (list != 0) {
        list->next = Change(list->next, key);
        if (list->info == key) return list->next;
        else return list;
    }
    return 0;
}
```

- What does this code do? How can we reason about it?
 - Empty list, one-node list, two-node list, n-node list
 - Similar to proof by induction
Eugene (Gene) Myers

- Lead computer scientist/software engineer at Celera Genomics (now at Berkeley)

- "What really astounds me is the architecture of life. The system is extremely complex. It's like it was designed." ... "There's a huge intelligence there."