CPS 108, Spring 2004

e Software Design and Implementation

> Object oriented programming and design

* Language independent concepts including design patterns,
e.g., Model-View-Controller, iterator, factory, bridge, ...

* Design independent concepts, e.g., coupling, cohesion, testing,
refactoring, profiling, ...

e What's in the course?

> C++ and Java, team projects, mastery exams
* team projects can be more and less than the sum of their parts

> high-level abstractions, low-level details

* patterns, heuristics, and idioms

Software Design 11

Application Programming Interface, API
e Standard C++ headers, STL headers
> Curses
» wxWindows
e Java API
> java.util, javax.swing, java.net, javax.crypto, ...
> Eclipse SWT
e Google API

o Gracenote API

Software Design 12

Program Design and Implementation

e Language independent principles of design and
programming
> design heuristics
* coupling, cohesion, small functions, small interfaces ...
> design patterns
* factories, adapter, MVC, decorator, iterator, ...

e Language specific:
> Idioms
* smart pointers, vectors/arrays, overloaded operators ...
> idiosyncracies, idiocies
* must define virtual destructor, stream zoo in Java, ...

Software Design 13

Administrivia

o check website and bulletin board regularly
> http://www.cs.duke.edu/courses/cpsl08/current/

> See links to bulletin board and other stuff
e Grading (see web pages)
> group projects: small, medium, large
> mastery programs (solo or semi-solo endeavors)
> readings and summaries
> tests
o Evaluating team projects, role of TA, UTA, consultants
> face-to-face evaluation, early feedback
e Compiling, tools, environments, Linux, Windows, Mac
> g++3.3,Java2aka14, JRE, ...

Software Design 14




wordlines.cpp, understanding code

typedef map<string, set<int> > linemap;
while (getline (input,line)) {

linecount++;
istringstream iline (line);
while (iline >> w) {
linemap: :iterator it = info.find(w);
if (it == info.end()) {
set<int> si;
si.insert(linecount) ;
info.insert (make pair(w,si));

}
else {

it->second.insert (linecount) ;
}

}

Software Design 15

Questions about wordlines.cpp

e Conceptually, what's a map and what's a set?

e In terms of implementation how do they work?

o What's an iterator (abstractly and concretely)

o What are streams? ifstream, cin/cout, istring/ostring, ...
e What's a templated class?

e Other questions?

Software Design 16

Classes: Review/Overview

e A class encapsulates state and behavior
> Behavior first when designing a class
» Information hiding: who knows state/behavior?

e State is private/protected; some behavior is public
> Private/protected helper functions
> A class is called an object factory, creates lots of instances

o Classes communicate and collaborate
» Parameters: send and receive
» Containment: has a reference to
> Inheritance: is-a

Software Design 17

C++ (and Java) class construction

e C++ uses.h and .cpp, Java uses .java
» Documentation different (javadoc vs. 22?)

e Default ctor, copy constructor, destructor, assignment operator
> tvector, string, Date
» Copy constructor needed to avoid shallow copy
> In C++ destructors needed to free resources/self, Java?
» Clone makes copy in Java (rare), share is default

e Private, protected, public, (package)
> Private default in C++, package default in Java

> Per method declaration in Java, class sections in C++

Software Design 18




Design Criteria

Good design comes from experience, experience comes from bad
design
Fred Brooks (or Henry Petroski)

e Design with goals:
> ease of use
> portability
> ease of re-use
> efficiency
> first to market

Software Design 19

How to code

e Coding/Implementation goals:
> Make it run
> Make it right
> Make it fast
» Make it small
e spiral design (or RAD or !waterfall or ...)
» what'’s the design methodology?

design specification

implementation

Software Design 110

XP and Refactoring

(See books by Kent Beck (XP) and Martin Fowler (refactoring))
o eXtreme Programming (XP) is an agile design process
> Communication: unit tests, pair programming, estimation
> Simplicity: what is the simplest approach that works?
» Feedback: system and clients; programs and stories
> Courage: throw code away, dare to be great/different

e Refactoring

> Change internal structure without changing observable
behavior

> Don’t worry (too much) about upfront design
» Simplicity over flexibility (see XP)

Software Design 111

Modules, design, coding, refactor, XP

e Make it run, make it right, make it fast, make it small
e Do the simplest thing that can possibly work (XP)
> Design so that refactoring is possible

» Don't lose sight of where you're going, keep change in
mind, but not as the driving force [it will evolve]

e Refactor: functionality doesn’t change, code does
> Should mean that new tests aren’t written, just re-run
» Depends on modularity of code, testing in pieces

e What’s a module in C++

> Could be a class, a file, a directory, a library, a namespace
> We should, at least, use classes, files, directories

Software Design 112




Design Heuristics: class/program/function

(see text by Arthur Riel)
o Coupling
> classes/modules are independent of each other
> goal: minimal, loose coupling
> do classes collaborate and/or communicate?
e Cohesion
> classes/modules capture one abstraction/model
> keep things as simple as possible, but no simpler
> goal: strong cohesion (avoid kitchen sink)
e The open/closed principle

> classes/programs: open to extensibility, closed to
modification

Software Design 113

C++ idioms/general concepts

o Genericity

> Templates, STL, containers, algorithms
o Copy/Assignment/Memory

> Deep copy model, memory management “required”
o Low-level structures

» C-style arrays and strings compared to STL, Tapestry
® const

» Good for clients, bad for designers/coders?

e From C to C++ to Java

> function pointers, function objects, inheritance

Software Design 114

Standard Libraries

e In C++ there is the Standard Library, formerly known as the
Standard Template Library or STL

> Emphasizes generic programming (using templates)

> Write a sorting routine, the implementation depends on
* Elements being comparable
* Elements being assignable

We should be able to write a routine not specific to int, string or
any other type, but to a generic type that supports being
comparable/assignable

e In C++ a templated function/class is a code-factory, generates
code specific to a type at compile time

» Arguably hard to use and unsafe

Software Design 115

Eric Raymond

e Open source evangelist
> The Cathedral and the Bazaar

http://ot.op.org/cathedral-bazaar.html

> How to construct software
“Good programmers know what to write.
Great ones know what to rewrite (and
reuse).”
e How to convince someone that guns
are a good idea? Put this sign up:

e THIS HOME IS A GUN-FREE ZONE

Software Design 116




