
Software Design
10.1

Toward a GUI-programming model
We want to adhere to language-independent ideals

Concepts move from GUIs in Java to …
javax.swing and java.awt offer thousands of choices
• Too many to have to understand/find comfort in, but …

We want to write reasonable, robust , GUI applications
Actually write code, not simply adhere to lofty ideals
Show me the code!

Simple, extensible, re-usable conceptual framework
How to develop GUIs, how to extend
Ask Questions

Software Design
10.2

One GUI Conceptual Framework
Create a JPanel for the GUI contentPane

Provide a BorderLayout, organize hierarchically
Ok to use GridLayout, FlowLayout, … nested

Create Buttons, Menu-items, and other widgets
Bind each event-generator to a listener
Do not dispatch within a listener on event source
• No "if event-generator is button A do this"

Use anonymous inner classes, or named inner classes
Process events, created and attached close-to-source
Make a button, make a button-listener

Software Design
10.3

Click on a button, display the click
ActionListener textDisplayer = new ActionListener(){

public void actionPerformed(ActionEvent e)
{

showText(e.getActionCommand());
}

};

What does an ActionListener do?
Listens for an event, e.g., from Button, Menu, …
Processes the command/event

How do anonymous classes work?
Note: ActionListener is an interface, but object created!
See what Eclipse refactoring will do with this

Software Design
10.4

Making a Move: View and Controller

ActionListener moveMaker = new ActionListener(){
public void actionPerformed(ActionEvent e)
{
int val = Integer.parseInt(e.getActionCommand());
myControl.makeMove(new PuzzleMove(val));

}
};

We know this will be bound to a specific type of button
Not generic, completely application specific
Turns swing/GUI event into application event: Move

Controllers should be programmed abstractly
Don't base code on a GUI toolkit, separate concerns


