
Software Design
12.1

MVC, First the M – what's a Model?
The model is the game's intelligence and state

What does a board look like? How is board changed?
What is a valid move? 
What is a win?
When is the game over?
How does making a move change the model?
• Who makes a move?

What issues are there in designing a TTT Model?
Can try to be general at first, perhaps better to keep 
generality in mind when designing a specific model
Design TTTModel, but ultimately implement IModel



Software Design
12.2

Concentrate on Behavior/Use cases
How does code interact with Model? Game played?

Consider from player point of view: human, 
computer, network
What issues in smart computer player?
• Need to know possible moves, need to make a tentative 

move without commitment, e.g., minimax/alphabeta
• What about random player?

What about Board/Grid as separate from Model?
Why might this be useful --- what about views?



Software Design
12.3

Supporting classes for Game/Model?
What's a move and how do we make one?

Looking forward to other games, but this is TTT
How do we make a move? 

What's a player and what behavior does a player have?
Differentiate one player from another …
• hashCode and equals methods, compareTo?

Behavior in terms of move-making

How can we plug in different move-generation
Subclassing player
Delegating responsibility, strategy pattern



Software Design
12.4

How do test/check the M in MVC
What will the view do?

What responsibilities does a view have?
Think GUI, but also think text-driven
• Helps separate view from controller

What will the controller do?
Who mediates between players?
Keep M and V loosely-coupled
Do model changes propagate via controller?

What about JUnit testing of Model?
What are things we need to test?


