
Software Design
14.1

Networked games: ooga to nooga
Different games make writing general server difficult

Turn based games…
Multiplayer asynchronous games like Boggle…
Noah’s Ark, Samegame, …

Nooga story at Duke
Each summer for the past N summers …
• Do we have a general, usable architecture?

What should we do next?

What are key issues in developing networked games
Don’t worry about robustness or generality



Software Design
14.2

multi-platform, multi-os client/server
Suppose we send data between clients and servers…

Architectural issues impact client/server code
Little-endian/Big-endian issues
• 0xabcd is a 32-bit value, which is MSB? How is this stored?

How big is an int? 32-bits, 64 bits, …

Towards raising the level of discussion
Worrying about integer byte order is not fun 
Let’s worry about sending objects back-and-forth, not bytes
How do we send and receive objects?



Software Design
14.3

Client/Server Communication
The Java stream hierarchy is a rich source of options

Object streams, Data streams, Buffered Readers, …
Often these convert between bytes and characters
• What’s the story with Unicode? (e.g. compared to ASCII)
• FileStream, BufferedReader, …, 

We can read and write objects over sockets
Advantages compared to lower-level protocols?
Disadvantages?

Issues in understanding and implementing
Where do objects “live”, are classes different?
Subclass/Superclass issues
What about connection issues (where, how, knowledge)



Software Design
14.4

Clients and Servers: server side
Server socket exists on some machine, listens to a “port”

A port isn’t a physical concept, it’s an OS concept
The OS manages ports, some services listen at 
predetermined ports, e.g., mail at port 25
• User programs use ports above 1024

Server gets a connection and handles the request, but 
what about other connection requests?

Can’t be too busy processing request, or will miss 
other attempts at connections
Spin off handler as a separate program/process 

Server blocks on accepting connections, new jdk1.4 API 
for java.nio.channels might improve things

Why is blocking not ideal?



Software Design
14.5

Networked Games
What will go over the network?

Board?
Move?
Other?

Where is the controller?
Server?
Client?
Combination?

How does the server work for many games?
Rules important?



Software Design
14.6

Simple Client/Server code
The example shows how a client communicates 
commands to server

Deciding how to process a command is simple, but 
not robust/OO in the current model

How are client and server similar? Different?
Both know about all commands?
How do they know this?



Software Design
14.7

Architectural considerations
What can we do to generalize things, move away from 
chain of if/else code

Create commands corresponding to protocol
Execute command obtained by map

What’s in the map? Some commands require state, e.g., 
more data from server or client

Can have a map of string to object, but how to get 
information into the object?
Can map string to object factory, have a per-command 
factory
Factory knows how to create each command


