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Networked games: ooga to nooga
Different games make writing general server difficult

Turn based games…
Multiplayer asynchronous games like Boggle…
Noah’s Ark, Samegame, …

Nooga story at Duke
Each summer for the past N summers …
• Do we have a general, usable architecture?

What should we do next?

What are key issues in developing networked games
Don’t worry about robustness or generality
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multi-platform, multi-os client/server
Suppose we send data between clients and servers…

Architectural issues impact client/server code
Little-endian/Big-endian issues
• 0xabcd is a 32-bit value, which is MSB? How is this stored?

How big is an int? 32-bits, 64 bits, …

Towards raising the level of discussion
Worrying about integer byte order is not fun 
Let’s worry about sending objects back-and-forth, not bytes
How do we send and receive objects?
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Client/Server Communication
The Java stream hierarchy is a rich source of options

Object streams, Data streams, Buffered Readers, …
Often these convert between bytes and characters
• What’s the story with Unicode? (e.g. compared to ASCII)
• FileStream, BufferedReader, …, 

We can read and write objects over sockets
Advantages compared to lower-level protocols?
Disadvantages?

Issues in understanding and implementing
Where do objects “live”, are classes different?
Subclass/Superclass issues
What about connection issues (where, how, knowledge)
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Clients and Servers: server side
Server socket exists on some machine, listens to a “port”

A port isn’t a physical concept, it’s an OS concept
The OS manages ports, some services listen at 
predetermined ports, e.g., mail at port 25
• User programs use ports above 1024

Server gets a connection and handles the request, but 
what about other connection requests?

Can’t be too busy processing request, or will miss 
other attempts at connections
Spin off handler as a separate program/process 

Server blocks on accepting connections, new jdk1.4 API 
for java.nio.channels might improve things

Why is blocking not ideal?
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Networked Games
What will go over the network?

Board?
Move?
Other?

Where is the controller?
Server?
Client?
Combination?

How does the server work for many games?
Rules important?
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Simple Client/Server code
The example shows how a client communicates 
commands to server

Deciding how to process a command is simple, but 
not robust/OO in the current model

How are client and server similar? Different?
Both know about all commands?
How do they know this?
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Architectural considerations
What can we do to generalize things, move away from 
chain of if/else code

Create commands corresponding to protocol
Execute command obtained by map

What’s in the map? Some commands require state, e.g., 
more data from server or client

Can have a map of string to object, but how to get 
information into the object?
Can map string to object factory, have a per-command 
factory
Factory knows how to create each command


