
Software Design
15.1

Applets and Applications
Application run by user, double-clickable/command-line

No restrictions on access, reads files, URLS, …
GUI applications typically include a JFrame
• Has title, menus, closeable, resizeable

Applet is downloaded via the web
Runs in browser, not trusted (but see policy later)
Can't read files on local machine (but see policy)
Can't be resized within browser
Uses jar file to get all classes at once
• Alternative? Establish several connections to server

Software Design
15.2

Developing Applets and Applications
Create a JPanel with the guts of the GUI/logic

What will be in the content pane of both deployments
Makes GUI very simple, see code examples
Use JPanel in both Applet and Application

Test with application first, easier to read files/resources
Migrate to Applet, test first with appletviewer
Migrate to web, may need to clear cache/reload

Ideally first cleanly into OOGA architecture
Gui isn't the view, what about interfaces?

Software Design
15.3

Packages, JAR files, deployment
http://java.sun.com/docs/books/tutorial/jar/basics/index.html

Java packages correspond semantically to modules
(related classes) and syntactically to a directory structure

Class names correspond to file names
Package names correspond to directories
Related classes belong together, easier to develop,
easier to deploy
Leverage default/package access, use properties of
protected which is subclass and package access

Software Design
15.4

Packages, javac, java, javadoc
In moderately big programs packages are essential

Can’t easily live in a directory with 50 .java files
Can’t easily co-exist in such a directory
Harder to use tools like Make and Ant

Each of javac, java, javadoc is slightly different with
packages, all must co-exist with CLASSPATH

File system vs. compiler vs. runtime
Source of confusion and problems
IDEs can manage Make/CLASSPATH issues

Software Design
15.5

CLASSPATH and related concepts
The default CLASSPATH is . current directory

Works fine with default/unnamed packages
Will not work with named packages

Set CLASSPATH to directory in which packages live also
include current dir

setenv CLASSPATH "~ola:."
setenv CLASSPATH "`pwd`:."

On windows machines change registry variable,
separator is semi-colon rather than colon

All problems are CLASSPATH problems

Software Design
15.6

More package details
To compile

Can cd into directory and type javac *.java
Can also type javac ooga/*.java from one level up
If CLASSPATH isn't set, the second won't work

To run
java ooga.TicTac will work, you must specify the "real"
name of the class being used.
Reading files requires full-paths or run from directory in
which file lives

To document
http://java.sun.com/j2se/javadoc/faq.html
Don't need to use –sourcepath, but can
javadoc –d doc ooga ooga.timer ooga.game …

Software Design
15.7

javadoc for packages
See the javadoc faq
http://java.sun.com/j2se/javadoc/faq.html

For each package create a package.html file
• Not in /** */ javadoc format, strictly html
• First sentence after <body> is main description; a

sentence ends with a period.
• The package.html file should provide complete

instructions on how to use the package. All programmer
documentation should be accessible or part of this file,
e.g., in the file or linked to the file

Use the {@link foo.bar bar} tag appropriately.
• See the FAQ, or the source for the elan package online

You may want to keep .java and .class files separate, see
sourcepath and classpath as commandline args to java

Software Design
15.8

From JITs to Deoptimization
JITs compile bytecodes when first executed

If we can cache translated code we can avoid re-translating
the same bytecode sequence
Spend time compiling things that aren’t frequently
executed (optimistic optimization?)
Errors indicate “compiled code” rather than line number

Sun’s HotSpot VM uses a different strategy for performance
Adaptive compilation: save time over JIT, compile
“hotspots” rather than everything, uses less memory, starts
program faster, http://java.sun.com/products/hotspot/
No method inlining, but uses dynamic deoptimization
• Program loads new subclass, compiled code invalid, so …?

What does the class loader do?

Software Design
15.9

Loading .class files
The bytecode verifier “proves theorems” about the bytecodes
being loaded into the JVM

These bytecodes may come from a non-Java source, e.g.,
compile Ada into bytecodes (why?)

This verification is a static analysis of properties such as:
.class file format (including magic number 0xCAFEBABE)
Methods/instances used properly, parameters correct
Stack doesn’t underflow/overflow

Verification is done by the JVM, not changeable
Contrast ClassLoader, which is changeable, can modify
classes before they’re loaded into the JVM

http://securingjava.com
http://java.sun.com/sfaq/verifier.html

Software Design
15.10

The ClassLoader
The “boot strap” loader is built-in to the JVM

Sometimes called the “default” loader, but it’s not
extensible or customizable the way other loaders are
Loads classes from the platform on which the JVM runs
(what are loader and JVM written in?)

Applet class loader, RMI class loader, user loaders
Load .class files from URLs, from other areas of platform
on which JVM runs
A class knows how it was loaded and new instances will
use the same loader

Why implement a custom loader?
Work at Duke with JOIE

Software Design
15.11

Applications and Applets
An applet is a program delivered via the web

security issues, sandbox model
where does code/images/etc come from? How is it
delivered?
what browsers support JDK1.2 out-of-the box?
Use IE/Netscape with plugin, use Opera as is, use
appletviewer for debugging, testing

Possible to wrap up lots of classes in a .jar file
java archive, similar to a tar file, possible to include
.class files, .au, .gif, etc, so all code transferred at once

Software Design
15.12

Running an Applet
An applet has an init() method

similar to constructor, called only once, when the
applet is first loaded

An applet has a start() method
called each time the applet becomes “active”, run the
first time, or revisited e.g., via the back button in a
browser

An applet has a stop() method
called when applet is invisible, e.g., user scrolls or
goes to another web page

other methods in an applet
destroy, getAppletInfo, getParameterInfo

Applet subclasses Panel, so it is an Container/Component

Software Design
15.13

Security Manager
Applets use a SecurityManager

Query for permissions
Supported by browsers by
convention (would you use
an “untrusted” browser)

The picture shows JDK 1.0
model, “sandbox” restrictions
supported by SecurityManager

Untrusted code restricted to
the sandbox
All downloaded/applets are
untrusted
Severely limits what a
downloaded program can do

Software Design
15.14

SecurityManager changes in JDK 1.1
Applets support signing
using digital signatures

Signature stored with
code in JAR file that’s
downloaded
Clients support
open/full access to
“trusted” applets, some
signatures ok

Still “all-or-nothing”, an
applet is untrusted or
completely trusted

What might be
preferable?

Software Design
15.15

SecurityManager changes in JDK 1.2
Policies are now supported

Allow more fine-grained
control of access,
permission
Based on location (URL)
and/or digital signatures
Uses public/private key,
applets don’t need to be
signed, can be from a
trusted location

Set policies on a system
wide basis using
policytool

What about user-level
permissions?

Software Design
15.16

Applet codebase
JVM executing in browser has different capabilities than
“regular” JVM

Looks in codebase as its CLASSPATH, also uses
client/browser side CLASSPATH
Codebase is relative to location of web page originating
the applet for security reasons
Implications for downloading foo.jar?

