STL concepts

e Container: stores objects, supports iteration over the objects
> Containers may be accessible in different orders
> Containers may support adding/removing elements
> e.g., vector, map, set, deque, list, multiset, multimap

e Iterator: interface between container and algorithm
> Point to objects and move through a range of objects
> Many kinds: input, forward, random access, bidirectional
> Syntax is pointer like, analagous to (low-level) arrays

e Algorithms
> find, count, copy, sort, shuffle, reverse, ...

Software Design 21



Iterator specifics

e An iterator is dereferenceable, like a pointer
> *it is the object an iterator points to

e An iterator accesses half-open ranges, [first..last), it can have a
value of last, but then not dereferenceable

> Analagous to built-in arrays as we’ll see, one past end is ok

e An iterator can be incremented to move through its range
> Past-the-end iterators not incrementable

vector<int> v; for(int k=0; k < 23; k++) v.push back(k);

vector<int>::iterator it = v.begin()
while (it '= v.end()) { cout << *v << endl; v++;}

Software Design

22



Design patterns

a“
L]

.. describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice”

Christopher Alexander, quoted in GOF

Name

> good name provides a handle for the pattern, builds vocabulary
Problem

> when pattern is applicable, context, criteria to be met, design goals
Solution

> design, collaborations, responsibilities, and relationships
Forces and Consequences

> trade-offs, problems, results from applying pattern: help in
evaluating applicability

Software Design 23



lterator as Pattern

e (GOF) Provides access to elements of aggregate object
sequentially without exposing aggregate’s representation

> Support multiple traversals

> Supply uniform interface for different aggregates: this is
polymorphic iteration (see C++ and Java)

e Solution: tightly coupled classes for storing and iterating
> Aggregate sometimes creates iterator (Factory pattern)
> Iterator knows about aggregate, maintains state

e Forces and consequences
> Who controls iteration (internal iterator, external iterator)?
> Who defines traversal method?
> Robust in face of concurrent insertions and deletions?

Software Design

24



STL overview

e STL implements generic programming in C++
> Container classes, e.g., vector, stack, deque, set, map
> Algorithms, e.g., search, sort, find, unique, match, ...
> Iterators: pointers to beginning and one past the end
> Function objects: less, greater, comparators

e Algorithms and containers decoupled, connected by iterators
> Why is decoupling good?

> Extensible: create new algorithms, new containers, new
iterators, etc.

> Syntax of iterators reflects array/pointer origins, an array
can be used as an iterator

Software Design 2.5



STL examples: wordlines.cpp

e How does an iterator work?
> Start at beginning, iterate until end: use [first..last) interval
> Pointer syntax to access element and make progress

vector<int> v; // push elements
vector<int>::iterator first v.begin() ;
vector<int>::iterator last v.end() ;
while (first < last) {

cout << *first << endl;

++first;

}

> Will the while loop work with an array/pointer?

e In practice, iterators aren’t always explicitly defined, but
passed as arguments to other STL functions

Software Design 2.6



Review: what’s a map, a set, a ...

e Maps keys to values
> Insert key/value pair
> Extract value given a key, iterate over pairs

> STL uses red-black tree, guaranteed O(log n) ...
* STL unofficially has a hash_map, see SGI website

> Performance and other trade-offs?
e A setcan be implemented by a map

> Stores no duplicates, in STL guaranteed O(log n), why?
> STL also has multimap

Software Design

2.7



arrays and strings: what’s a char *?

e Why not rely solely on string and vector classes?
> how are string and vector implemented?

> lower level access can be more efficient (but be leery of
claims that C-style arrays/strings required for efficiency)

> real understanding comes when more levels of abstraction
are understood

e string and vector classes insulate programmers from
inadvertent attempts to access memory that’s not accessible

> what is the value of a pointer?
> what is a segmentation violation?

Software Design 2.8



Contiguous chunks of memory

e In C++ allocate using array form
of new

int * a = new int[100];

double * b = new double[300];

® new [] returns a pointer to a
block of memory

> how big? where?

e size of chunk can be set at
runtime, not the case with

int a[100]; '

cin >> howBig;
int a[howBigqg]; ®
e delete [] a; // storage returned

Software Design

int * a = new int[100];

32 33 98 99

a+32 is a pointer

*(a+l) is an int (same as a[l])
* (a+99) is an int

* (a+100) is trouble

a+100 is valid for comparison

of pointer values

29



C-style contiguous chunks of memory

e In C, malloc is used to allocate
memory
int * a = (int ¥*)
malloc (100 * sizeof (int));
double * d = (double *)
malloc (200 * sizeof (double));

e malloc must be cast, is NOT type-
safe (returns void *)

> void * is ‘generic’ type, can be
cast to any pointer type

o free(d); // return storage
e We WILL NOT USE malloc/free

Software Design

int * a = (int ¥*)

malloc(100*sizeof (int)) ;
g vl e

32 33 98 99

a+32 is a pointer

*(a+l) is an int (same as a[l])
* (a+99) is an int

* (a+100) is trouble

a+100 is valid for comparison

2.10



Address calculations, what is sizeof(...)?

int * a = new int[100];

———y-—- -

0o 1 32 33 98 99
a[33] is the same as * (a+33)
if a is 0x00a0, then a+l is
0x00a4, a+2 is 0x00a8
(think 160, 164, 168)

double * d = new double[200];

0 1 33 199

* (d+33) is the same as d[33]
if d is 0x00b0, then d+1 is
0x00b8, d+2 is 0x00cO
(think 176, 184, 192)

Software Design

x is a pointer, what is x+33?
> a pointer, but where?

> what does calculation
depend on?

result of adding an int to a
pointer depends on size of
object pointed to

result of subtracting two
pointers is an int:

(d + 3) -d==

211



More pointer arithmetic

e address one past the end of an char * a = new char[44];
array is ok for pointer cl}zar : begln = 2;44
comparison only char © end = a '

e what about *(begin+44)? o TTtTT 5 e 2 3
e what does begin++ mean? while (begin < end)
{
*begin = ‘z’;
e how are pointers compared begin++; // *begin++ = ‘z’
using < and using == ? }

e what is value of end - begin?

Software Design 212



What is a C-style string?

e array of char terminated by sentinel “\0" char
> sentinel char facilitates string functions
> “\0’ is nul char, unfortunate terminology
> how big an array is needed for string “hello”?

e astring is a pointer to the first character just as an array is a
pointer to the first element

> char * s = new char|[6];
> what is the value of s? of s[0]?
e char * string functions in <string.h>

Software Design 213



C style strings/string functions

e strlenis the # of charactersina e what’s “wrong” with this code?

string
> same as # elements in char int countQs(char * s)
arrav? // pre: ‘\0’ terminated
y: // post: returns # gq’s

int strlen(char * s) {
// pre: ‘\0’ terminated int count=0;
// post: returns # chars for (k=0;k < strlen(s) ;k++)
{ if (s[k]l=='q’) count++;

int count=0;
while (*s++) count++; }
return count;

return count;

}
e Are these less cryptic? e how many chars examined for

1 ?
while (s[count]) count++; 10 character strlng.
// OR, is this right? ® solution?
char * t = s;
while (*t++);
return t-s;

Software Design 214



<string.h> aka <cstring> functions

e strcpy copies strings
> who supplies storage?
> what’s wrong with s = t?

char s[5];

char t[6];

char * h = “hello”;
strcpy(s,h); // trouble!
strecpy(t,h); // ok

char * strcpy(char* t,char* s)
//pre: t, target, has space
//post: copies s to t,returns t

{
int k=0;
while (t[k] = s[k]) k++;
return t;

}
e strncpy copies n chars (safer?)

Software Design

e what about relational operators
<, ==, etc.?

e can’t overload operators for
pointers, no overloaded
operators in C

e strcmp (also strncmp)
> return 0 if equal
> return neg if lhs <rhs

> return pos if lhs > rhs
if (strcemp(s,t)==0) // equal

if (strcemp(s,t) < 0)// less
if (stremp(s,t) > 0)// ?222°?

215



Arrays and pointers

e These definitions are related, but not the same
int a[l100];
int * ap = new int[10];

e both a and ap represent “arrays’, but ap is an lvalue

e arrays converted to pointers for function calls:
char s[] = “hello”;
// prototype: int strlen(char * sp);
cout << strlen(s) << endl;

e multidimensional arrays and arrays of arrays
int a[20][5];
int * b[10]; for(k=0; k < 10; k++) b[k] = new int[30];

Software Design 2.16



