Battleship overview

o What are the use cases?
> How does customer use the program?
> What are scenarios as the game develops?
> What parts of the "standard version" are good/bad?
> What options might we want to have?

o How will we design the program?
> Brainstorm classes
» Develop and test
> Rethink design and use cases
> Develop and test

7 ees

Software Design

Battleship classes, Freecell classes

o What are the classes in the program? Behaviors?
> Look for objects, how do they act? Nouns? Verbs

e What about a Ship class? Behaviors/Responsibilities?
> State? Mutable?
» Comparison? Other games?
> Is there any behavior?

e What about CardPile classes, similarities? Differences?

> FreeCell, AcePile, DrawPile, ...
> Other card games?

Software Design

32

Inheritance (language independent)

o First view: exploit common interfaces in programming
> iterator, C++ function objects
¢ Iterators in STL/C++ share interface by convention/templates
» Implementation varies while interface stays the same

e Second view: share code, factor code into parent class
> Code in parent class shared by subclasses
> Subclasses can override inherited method
* Can subclasses override and call?

e Polymorphism/late(runtime) binding (compare: static)

> Actual function called determined when program runs, not
when program is compiled

Software Design

Inheritance guidelines in C++

e Inherit from Abstract Base Classes (ABC)
> one pure virtual function needed (=0)
* Subclasses must implement, or they’re abstract too
> must have virtual destructor implemented

* can have pure virtual destructor with an implementation, but
this is special case, not normally needed [force ABC]

e Avoid protected data, but sometimes this isn’t possible
> data is private, subclasses have it, can’t access it
> keep protected data to a minimum

o Single inheritance, assume most functions are virtual

> multiple inheritance ok when using ABC, problem with
data in super classes

> virtual: some overhead, but open/closed principle intact

Software Design

34




Inheritance Heuristics

e A base/parent class is an interface
> Subclasses implement the interface
* Behavior changes in subclasses, but there’s commonality
> The base/parent class can supply some default behavior
* Derived classes can use, override, both
> The base/parent class can have state
¢ Protected: inherited and directly accessible
¢ Private: inherited but not accessible directly
> Abstract base classes are a good thing
Push common behavior high up in an inheritance hierarchy
If the subclasses aren’t used polymorphically (e.g., through a
pointer to the base class) then the inheritance hierarchy is
probably flawed

Software Design 35

Inheritance Heuristics in C++

e One pure virtual (aka abstract) function makes a class abstract
> Cannot be instantiated, but can be constructed (why?)
> Default in C++ is non-virtual or monomorphic
¢ Unreasonable emphasis on efficiency, sacrifices generality
* If you think subclassing will occur, all methods are virtual
> Must have virtual destructor, the base class destructor (and
constructor) will be called

o We use public inheritance, models is-a relationship
» Private inheritance means is-implemented-in-terms-of
¢ Implementation technique, not design technique
¢ Derived class methods call base-class methods, but no “usable-
as-a” via polymorphism
* Access to protected methods, and can redefine virtual funcs

Software Design

3.6

Inheritance and Layering/Aggregation

e Layering (or aggregation) means “uses via instance variable”
» Use layering/attributes if differences aren’t behavioral
> Use inheritance when differences are behavioral

e Consider Student class: name, age, gender, sleeping habits
> Which are attributes, which might be virtual methods

e Lots of classes can lead to lots of problems
> It’s hard to manage lots of classes in your head

> Tools help, use speedbar in emacs, other class browsers in
IDEs or in comments (e.g., javadoc)

e Inheritance hierarchies cannot be too deep (understandable?)

Software Design 37

Inheritance guidelines (from Riel)
e Beware derived classes with only one instance/object
> For the CarMaker class is GeneralMotors a subclass or an

object?

e Beware derived classes that override behavior with a no-op
> Mammal class from which platypus derives, live-birth?

e Too much subclassing? Base class House
> Derived: ElectricallyCooledHouse, SolarHeatedHouse?

o What to do with a list of fruit that must support apple-coring?
> Fruit list is polymorphic (in theory), not everything corable

Software Design

38




Spreadsheet: Model, View, Controller

o Model, View, Controller is MVC
> Model stores and updates state of application
* Example: calculator, what's the state of a GUI-calculator?
> When model changes it notifies its views
appropriately
¢ Example: pressing a button on calculator, what happens?
> The controller interprets commands, forwards them
appropriately to model (usually not to view)
* Example: code for calculator that reacts to button presses

* Controller isn't always a separate class, often part of
GUI-based view in M/VC

Software Design

How do Model/View communicate?

o Model has-a view (or more than one)
» Can call view methods
> Can pass itself or its fields/info to view

e View can call back on model passed (e.g., by model itself)
> Model passes this, view accepts Model as parameter
> Possible for controller/other class to pass model

e Controller contains both model and view (for example)

» Constructs MV relationship
> Possible for controller to be part of view (e.g., GUI)

Software Design

Controller in MVC

e Loop until game over, where is code for board display?

while (true) {
getMove (m,player) ;
if (ttt.makeMove (m)) {
if (ttt.gameOver()) {

break;
}
player = (player == 'X' ? '0' : 'X");
}
else {
cout << “bad move “ << m << endl;
}

Software Design

GUI controller

e Typically no loop, GUI events drive the system
> Wire events to event handlers (part of controller)
> What about model/view game over coordination?

connect (mouseClick, moveGenerator); // metacode
void GUI: :moveGenerator (MouseClick m)
{
controller->process (moveFromMouse (m)) ;
}
void Controller: :process (const TTTMove& m)
{
if (! myModel->makeMove (m)) {
myView->showBadMove (m) ;

}

Software Design




Designing classes in general

e Highly cohesive
> Each class does one thing
> Interface is minimally complete, avoid kitchen sink
* What if client/user might want to hammer with an awl?

e Loose coupling (and minimize coupling)
> Classes depend on each other minimally
» Changes in one don’t engender changes in another
> Subclasses are tightly coupled, aggregates are not
* Prefer Has-a to Is-a

o Test classes independently

> Unit testing means just that, and every class should have a
unit test suite

Software Design 313

Tell/ask and the Law of Demeter

e "Don't talk to strangers"

> Call methods in this class, parameters, fields, for created
local variables, for values returned by class methods

> No good, why? fromPile. topCard () .getSuit ()

From David.E.Smyth@jpl.nasa.gov Mon May 26 17:33:30 1997

>From: "David E. Smyth"

>To: lieber@ccs.neu.edu >Subject: Law of Demeter >

>I have been using LoD pervasively since about 1990, and it has taken
>firm hold in many areas of the Jet Propulsion Laboratory. Major systems
>which have used LoD extensively include the Telemetry Delivery System (a
>real-time database begun in 1990), the Flight System Testbed, and Mars
>Pathfinder flight software (both begun in 1993). We are going to use LoD
>as a foundational software engineering principle for the X2000 Europa
>orbiter mission. I also used it within a couple of commercial systems
>for Siemens in 91-93, including a Lotus Notes like system, and a email
>system.

Software Design 314

More heuristics (some from Riel)

o Users depend on a class’s interface, but a class shouldn’t
depend on its users

e Be suspicious of “God”-classes, e.g., Driver, Manager, System
> Watch out for classes supporting method subsets

e Beware of classes with lots of get/set methods

e Support Model/View distinction

> The model shouldn’t depend on the view, but should
support multiple views

e If a class contains an object it should directly use the object by
sending it messages

Software Design 315

Working as part of a group

see McCarthy, Dynamics of Software Development

e establish a shared vision
> what was/is Freecell? what can we add?
> harmonious sense of purpose

e develop a creative environment
> the more ideas the better, ideas are infectious
> don’t flip the BOZO bit

e scout the future

> what’s coming, what's the next project
> what new technologies will affect this project

Software Design 316




Scheduling/Slipping

o McCarthy page 50, Group Psyche, TEAM=SOFTWARE

> anything you need to know about a team can be
discovered by examining the software and vice versa

> leadership is interpersonal choreography

> greatness results from ministrations to group psyche
which is an “abstract average of individual psyches”

» mediocrity results from neglect of group psyche
e Slipping a schedule has no moral dimension (pp 124-145)

> no failure, no blame, inevitable consequence of
complexity

» don’t hide from problems
> build from the slip, don’t destroy
> hit the next milestone, even if redefined (“vegetate”)

Software Design 317

Towards being a hacker

o See the hacker-faq (cps 108 web page)
> Hackers solve problems and build things, and they believe in
freedom and voluntary mutual help. To be accepted as a
hacker, you have to behave as though you have this kind of
attitude yourself. And to behave as though you have the
attitude, you have to really believe the attitude.

e The world is full of fascinating problems
> no one should have to solve the same problem twice
> boredom and drudgery are evil
> freedom is good
> attitude is no substitute for competence

You may not work to get reputation, but the reputation is a real
payment with consequences if you do the job well.

Software Design 318

Aside: ethics of software

o What is intellectual property, why is it important?
> what about FSF, GPL, copy-left, open source, ...
> what about money
> what about monopolies

o What does it mean to act ethically and responsibly?

> What is the Unix philosophy? What about protection?
What about copying? What about stealing? What about
borrowing?

> No harm, no foul? Is this a legitimate philosophy?

e The future belongs to software developers/entrepreneurs
> what can we do to ensure the world’s a good place?

Software Design 319




