
Software Design 3.1

Battleship overview
What are the use cases?

How does customer use the program?
What are scenarios as the game develops?
What parts of the "standard version" are good/bad?
What options might we want to have?

How will we design the program?
Brainstorm classes
Develop and test
Rethink design and use cases
Develop and test
…

Software Design 3.2

Battleship classes, Freecell classes
What are the classes in the program? Behaviors?

Look for objects, how do they act? Nouns? Verbs

What about a Ship class? Behaviors/Responsibilities?
State? Mutable?
Comparison? Other games?
Is there any behavior?

What about CardPile classes, similarities? Differences?
FreeCell, AcePile, DrawPile, …
Other card games?

Software Design 3.3

Inheritance (language independent)
First view: exploit common interfaces in programming

iterator, C++ function objects
• Iterators in STL/C++ share interface by convention/templates

Implementation varies while interface stays the same

Second view: share code, factor code into parent class
Code in parent class shared by subclasses
Subclasses can override inherited method
• Can subclasses override and call?

Polymorphism/late(runtime) binding (compare: static)
Actual function called determined when program runs, not
when program is compiled

Software Design 3.4

Inheritance guidelines in C++
Inherit from Abstract Base Classes (ABC)

one pure virtual function needed (=0)
• Subclasses must implement, or they’re abstract too

must have virtual destructor implemented
• can have pure virtual destructor with an implementation, but

this is special case, not normally needed [force ABC]

Avoid protected data, but sometimes this isn’t possible
data is private, subclasses have it, can’t access it
keep protected data to a minimum

Single inheritance, assume most functions are virtual
multiple inheritance ok when using ABC, problem with
data in super classes
virtual: some overhead, but open/closed principle intact

Software Design 3.5

Inheritance Heuristics
A base/parent class is an interface

Subclasses implement the interface
• Behavior changes in subclasses, but there’s commonality

The base/parent class can supply some default behavior
• Derived classes can use, override, both

The base/parent class can have state
• Protected: inherited and directly accessible
• Private: inherited but not accessible directly

Abstract base classes are a good thing
Push common behavior high up in an inheritance hierarchy
If the subclasses aren’t used polymorphically (e.g., through a
pointer to the base class) then the inheritance hierarchy is
probably flawed

Software Design 3.6

Inheritance Heuristics in C++
One pure virtual (aka abstract) function makes a class abstract

Cannot be instantiated, but can be constructed (why?)
Default in C++ is non-virtual or monomorphic
• Unreasonable emphasis on efficiency, sacrifices generality
• If you think subclassing will occur, all methods are virtual

Must have virtual destructor, the base class destructor (and
constructor) will be called

We use public inheritance, models is-a relationship
Private inheritance means is-implemented-in-terms-of
• Implementation technique, not design technique
• Derived class methods call base-class methods, but no “usable-

as-a” via polymorphism
• Access to protected methods, and can redefine virtual funcs

Software Design 3.7

Inheritance and Layering/Aggregation
Layering (or aggregation) means “uses via instance variable”

Use layering/attributes if differences aren’t behavioral
Use inheritance when differences are behavioral

Consider Student class: name, age, gender, sleeping habits
Which are attributes, which might be virtual methods

Lots of classes can lead to lots of problems
It’s hard to manage lots of classes in your head
Tools help, use speedbar in emacs, other class browsers in
IDEs or in comments (e.g., javadoc)

Inheritance hierarchies cannot be too deep (understandable?)

Software Design 3.8

Inheritance guidelines (from Riel)
Beware derived classes with only one instance/object

For the CarMaker class is GeneralMotors a subclass or an
object?

Beware derived classes that override behavior with a no-op
Mammal class from which platypus derives, live-birth?

Too much subclassing? Base class House
Derived: ElectricallyCooledHouse, SolarHeatedHouse?

What to do with a list of fruit that must support apple-coring?
Fruit list is polymorphic (in theory), not everything corable

Software Design 3.9

Spreadsheet: Model, View, Controller
Model, View, Controller is MVC

Model stores and updates state of application
• Example: calculator, what's the state of a GUI-calculator?

When model changes it notifies its views
appropriately
• Example: pressing a button on calculator, what happens?

The controller interprets commands, forwards them
appropriately to model (usually not to view)
• Example: code for calculator that reacts to button presses
• Controller isn't always a separate class, often part of

GUI-based view in M/VC

Software Design 3.10

How do Model/View communicate?
Model has-a view (or more than one)

Can call view methods
Can pass itself or its fields/info to view

View can call back on model passed (e.g., by model itself)
Model passes this, view accepts Model as parameter
Possible for controller/other class to pass model

Controller contains both model and view (for example)
Constructs MV relationship
Possible for controller to be part of view (e.g., GUI)

Software Design 3.11

Controller in MVC
Loop until game over, where is code for board display?

while (true) {
getMove(m,player);
if (ttt.makeMove(m)){

if (ttt.gameOver()){
break;

}
player = (player == 'X' ? '0' : 'X');

}
else {

cout << “bad move “ << m << endl;
}

}

Software Design 3.12

GUI controller
Typically no loop, GUI events drive the system

Wire events to event handlers (part of controller)
What about model/view game over coordination?

connect(mouseClick, moveGenerator); // metacode
void GUI::moveGenerator(MouseClick m)
{

controller->process(moveFromMouse(m));
}
void Controller::process(const TTTMove& m)
{

if (! myModel->makeMove(m)){
myView->showBadMove(m);

}
}

Software Design 3.13

Designing classes in general
Highly cohesive

Each class does one thing
Interface is minimally complete, avoid kitchen sink
• What if client/user might want to hammer with an awl?

Loose coupling (and minimize coupling)
Classes depend on each other minimally
Changes in one don’t engender changes in another
Subclasses are tightly coupled, aggregates are not
• Prefer Has-a to Is-a

Test classes independently
Unit testing means just that, and every class should have a
unit test suite

Software Design 3.14

Tell/ask and the Law of Demeter
"Don't talk to strangers"

Call methods in this class, parameters, fields, for created
local variables, for values returned by class methods
No good, why? fromPile.topCard().getSuit()

From David.E.Smyth@jpl.nasa.gov Mon May 26 17:33:30 1997
>From: "David E. Smyth"
>To: lieber@ccs.neu.edu >Subject: Law of Demeter >
>I have been using LoD pervasively since about 1990, and it has taken
>firm hold in many areas of the Jet Propulsion Laboratory. Major systems
>which have used LoD extensively include the Telemetry Delivery System (a
>real-time database begun in 1990), the Flight System Testbed, and Mars
>Pathfinder flight software (both begun in 1993). We are going to use LoD
>as a foundational software engineering principle for the X2000 Europa
>orbiter mission. I also used it within a couple of commercial systems
>for Siemens in 91-93, including a Lotus Notes like system, and a email
>system.

Software Design 3.15

More heuristics (some from Riel)
Users depend on a class’s interface, but a class shouldn’t
depend on its users

Be suspicious of “God”-classes, e.g., Driver, Manager, System
Watch out for classes supporting method subsets

Beware of classes with lots of get/set methods

Support Model/View distinction
The model shouldn’t depend on the view, but should
support multiple views

If a class contains an object it should directly use the object by
sending it messages

Software Design 3.16

Working as part of a group
see McCarthy, Dynamics of Software Development

establish a shared vision
what was/is Freecell? what can we add?
harmonious sense of purpose

develop a creative environment
the more ideas the better, ideas are infectious
don’t flip the BOZO bit

scout the future
what’s coming, what’s the next project
what new technologies will affect this project

Software Design 3.17

Scheduling/Slipping
McCarthy page 50, Group Psyche, TEAM=SOFTWARE

anything you need to know about a team can be
discovered by examining the software and vice versa
leadership is interpersonal choreography
greatness results from ministrations to group psyche
which is an “abstract average of individual psyches”
mediocrity results from neglect of group psyche

Slipping a schedule has no moral dimension (pp 124-145)
no failure, no blame, inevitable consequence of
complexity
don’t hide from problems
build from the slip, don’t destroy
hit the next milestone, even if redefined (“vegetate”)

Software Design 3.18

Towards being a hacker
See the hacker-faq (cps 108 web page)

Hackers solve problems and build things, and they believe in
freedom and voluntary mutual help. To be accepted as a
hacker, you have to behave as though you have this kind of
attitude yourself. And to behave as though you have the
attitude, you have to really believe the attitude.

The world is full of fascinating problems
no one should have to solve the same problem twice
boredom and drudgery are evil
freedom is good
attitude is no substitute for competence

You may not work to get reputation, but the reputation is a real
payment with consequences if you do the job well.

Software Design 3.19

Aside: ethics of software
What is intellectual property, why is it important?

what about FSF, GPL, copy-left, open source, …
what about money
what about monopolies

What does it mean to act ethically and responsibly?
What is the Unix philosophy? What about protection?
What about copying? What about stealing? What about
borrowing?
No harm, no foul? Is this a legitimate philosophy?

The future belongs to software developers/entrepreneurs
what can we do to ensure the world’s a good place?

