
Software Design 5.1

Basic and Power Tools
(Pragmatic Programmer, Chapter 3)

Choose one editor and know it well
You need to be proficient. Simply typing linearly and using 
a mouse to cut and paste is not enough. You just can't be as 
effective that way as you can with a powerful editor under 
your fingers.

Configurable, Extensible, Programmable
Syntax highlighting, auto-completion, boilerplate, auto-
indent, IDE-like features (compile,run)
Using notepad is like using a teaspoon as a shovel—
simply typing and usinb basic mouse-based cut and paste 
is not enough.



Software Design 5.2

Use Source Code Control
Good user interfaces have an UNDO feature, preferably 
multiple levels of undo, redo

How do we get this with our programming efforts?
Source control, configuration management

Once a program is released, what's next?
Work on next version
Work on bug fixes
How to do these simultaneously? Branch source tree

How does more than one person work on same program?
CVS, concurrent versions system



Software Design 5.3

Debugging
Origin of word bug

That's not a bug, that's a feature
Call it an error, a mistake, a fundamental flaw, …

Debugging as problem-solving
Don't cast blame, find and fix the bug
Resist myopia: don't eliminate symptoms, fix the bug

What code to fix?
Compile a clean version, how?

How to fix? Use debugger, code walk-through, eyeballs
Read documentation (select system call is broken)



Software Design 5.4

Great Programming
Everyone else does bad programming

Everyone else does good programming

Everyone does mediocre programming

What is great programming?

What is bad programming?


