
Software Design
8.1

Model, View, Controller: battleship
Who does what, where are responsibilities in MVC?

This is a pattern, so there's isn't "one right way"

Model encapsulates state and behavior for game
Holds boards, interprets shots, game over, …
What other behavior responsibilities?
When model changes, it notifies the view

View shows boards, accepts mouse and other input
These inputs must be forwarded to model, how?
Sometimes via controller, often view/controller same

Software Design
8.2

How do we use a view?
The view knows about model (controller in battleship)

In battleship.cpp, view constructed with the model

The model (controller) knows about the view
Why can't this happen at model construction time?
How does this happen in battleship.cpp?
What are alternatives (what if client-code "forgets"?)

Hollywood principle for OO/MVC
Don't call us, we'll call you
The view calls the model when things happen
The model reacts and updates the view, repeat

Software Design
8.3

Sequence Diagram
Function calls over time
Click is mapped to call

Model called
Mouse->board coord

Model interprets shot
Responds to view
What happens next?

How is "turn-taking" enforced
Shot already taken?
Next player to move?
Other possibilities?

Software Design
8.4

Separate control/model?
Typically the control is not associated with the model

What is the model for battleship? Boards? Players?
Why is a separate control a good idea?

Toward network play
What does the controller do? Player interpretation?
Player x "goes", what happens next?
What are responsibilities of player?
What sequence of calls envisioned

What is right interface for model? For Controller?
How do they know about each other? Associations?

Software Design
8.5

Placing Ships
How are rules for placing ships enforced?

What happens in current version?
Who is responsible for constraints on placement?
How do we allow for alternative scenarios?

Strategy Design Pattern useful when:
Need variants of an algorithm
Clients shouldn't know about algorithm
Configure class with different behaviors

What does ShipPlacementStrategy need?
How to determine if a ship placement is ok?

Software Design
8.6

How does Strategy access ships?
Model can pass all ships to strategy

What does strategy really need to determine if a
placement is ok?
Just ships? Other data?

Model can pass itself to strategy
Why might this be better?
Downside to passing the model?

Worth doing in battleship example?

Software Design
8.7

Dummy model/controller
See pingcontroller.cpp

Echo/ping controller to show how MVC works

Simple version of a model that echos commands
Shot at? Here's the shot
Ship placed? Here's the ship

How do alternate play?
Where are players?
Other issues?

