
Software Design
9.1

From Using to Programming GUIs
Extend model of "keep it simple" in code to GUI

Bells and whistles ok, should be easy to use and hide

We're talking about software design
Not HCI or user-interface design or human factors…
However, compare winamp to iTunes

How do we design GUIs
Programming, drag-and-drop, …
How do we program/connect GUIs?

Software Design
9.2

javax.swing, events, and GUIs
GUI programming requires processing events

There’s no visible loop in the program
Wire up/connect widgets, some generate events, some 
process events
• Pressing this button causes the following to happen

We want to do practice “safe wiring”, meaning?

We need to put widgets together, what makes a good 
user-interface? What makes a bad user-interface?

How do we lay widgets out, by hand? Using a GUI-
builder? Using a layout manager?

How do we cope with widget complexity?

Software Design
9.3

JComponent/Container/Component
The java.awt package was the original widget package, it 
persists as parent package/classes of javax.swing widgets

Most widgets are JComponents (subclasses), to be 
used they must be placed in a Container
• The former is a swing widget, the latter awt, why?

A Container is also a Component, but not all Containers 
are JComponents (what?)

JFrame is often the “big container” that holds all the 
GUI widgets, we’ll use this and JApplet (awt 
counterparts are Frame and Applet)
A Jpanel is a JComponent that is also a Container
• Holds JComponents, for example and is holdable as well

Software Design
9.4

What do Containers do?
A Container is a Component, so it’s possible for a 
Container to “hold itself”? Where have we seen this?

“You want to represent part-whole hierarchies of objects. 
You want clients to be able to ignore the difference 
between compositions of objects and individual objects. 
Clients will treat all objects in the composite structure 
uniformly”.
Composite pattern solves the problem. Think tree, linked 
list: leaf, composite, component

What about parent references?
What about child references?

In java, a parent is responsible for painting its children
For “paint” think draw, arrange, manage, …



Software Design
9.5

Widget layout
A Layout Manager “decides” how widgets are arranged in 
a Container

In a JFrame, we use the ContentPane for holding 
widgets/components, not the JFrame itself
Strategy pattern: “related classes only differ in 
behavior, configure a class with different behaviors… 
you need variants of an algorithm reflecting different 
constraints…context forwards requests to strategy, 
clients create strategy for the context”
• Context == JFrame/container, Strategy == Layout

Layouts: Border, Flow, Grid, GridBag, Spring, …
I’ll use Border, Flow, Grid in my code

Software Design
9.6

BorderLayout (see Browser.java)
Default for the JFrame 
contentpane

Provides four areas, center is 
“main area” for resizing

Recursively nest for 
building complex (yet 
simple) GUIs

BorderLayout.CENTER for 
adding components

Some code uses “center”, 
bad idea (bugs?)

CENTER

NORTH

SOUTH

W
E
S
T

E
A
S
T

Software Design
9.7

Action and other events
Widgets generate events, these events are processed by 
event listeners

Different types of events for different scenarios: press 
button, release button, drag mouse, press mouse 
button, release mouse button, edit text in field, check 
radio button, …
Some widgets “fire” events, some widgets “listen” for 
events

To process events, add a listener to the widget, when the 
widget changes, or fires, its listeners are automatically 
notified.

Observer/Observable (related to MVC) pattern

Software Design
9.8

Adding Listeners
In lots of code you’ll see that the Container widget is the 
listener, so pressing a button or selecting a menu is 
processed by the Container/Frame’s actionPerformed 
method

All ActionListeners have an actionPerformed method, 
is this interface/implements or inheritance/extends?
Here’s some “typical” code, why is this bad?

void actionPerformed(ActionEvent e)
{

if (e.getSource() == thisButton) …
else if (e.getSource() == thatMenu)…

}



Software Design
9.9

A GUI object can be its own client
Occasionally a GUI will be a listener of events it generates

Simple, but not extendable
Inner classes can be the listeners, arguably the GUI is still 
listening to itself, but …
• Encapsulating the listeners in separate classes is better

Client (nonGUI) objects cannot access GUI components
Properly encapsulated JTextField, for example, responds to 
aGui.displayText(), textfield not accessible to clients
If the GUI is its own client, it shouldn’t access textfield
• Tension: simplicity vs. generality

Don’t wire widgets together directly or via controller that 
manipulates widgets directly

Eventual trouble when GUI changes
Software Design

9.10

Using inner/anonymous classes
For each action/event that must be processed, create an 
object to do the processing

Command pattern: parameterize object by an action to 
perform, queue up requests to be executed at different 
times, support undo
There is a javax.swing Event Queue for processing 
events, this is the hidden while loop in event 
processing GUI programs

The inner class can be named, or it can be created 
“anonymously”

For reuse in other contexts, sometimes naming helpful
Anonymous classes created close to use, easy to read 
(arguable to some)

Software Design
9.11

Listeners
Events propagate in a Java GUI as part of the event thread

Don’t manipulate GUI components directly, use the 
event thread
Listeners/widgets register themselves as interested in 
particular events
• Events go only to registered listeners, can be 

forwarded/consumed
ActionListener, KeyListener, ItemListener, 
MouseListener, MouseMotionListener, …, see 
java.awt.event.*

Isolate listeners as separate classes, mediators 
between GUI, Controller, Application
Anonymous classes can help here too

Software Design
9.12

Listeners and Adapters
MouseListener has five methods, KeyListener has three

What if we’re only interested in one, e.g., key pressed 
or mouse pressed?
• As interface, we must implement all methods as no-ops
• As adapter we need only implement what we want

Single inheritance can be an annoyance in this situation
Can only extend one class, be one adapter, …

What about click/key modifiers, e.g., 
shift/control/left/both

Platform independent, what about Mac?



Software Design
9.13

From Browser/Memory to OOGA
Can you design a game architecture before designing a game?

Which games should you write, do you need to have full-
blown implementations?
What’s enough to start?

Draw (on paper) a picture of the GUI
Generate scenarios, use-cases: what happens when user 
clicks here, what happens when user enters text in this 
box, what happens when game is over
Rough-out the components, prototype a GUI
Connect some/all components, make it possible to refactor

It’s hard to make a framework without making a frame

Software Design
9.14

MVC overview
Model, View, Controller is MVC

Model stores and updates state of application
• Example: calculator, what's the state of a GUI-calculator?

When model changes it notifies its views
• Example: pressing a button on calculator, what happens?

The controller interprets commands, forwards them 
appropriately to model (usually not to view)
• Example: code for calculator that reacts to button presses

Controller isn't always a separate class, often part of 
GUI-based view in M/VC

MVC is a fundamental design pattern: solution to a 
problem at a general level, not specific code per se

Software Design
9.15

MVC in in the jpuzzle suite
Sliding puzzle game allows users to move pieces near a 
blank piece to recreate an original image

See PuzzleGui, PuzzleController, PuzzleView, 
PuzzleModel, PuzzleApplet, PuzzleMove

The model “knows” the location of the pieces
Determines if move is legal
Makes a move (records it) and updates views
Supports move undo

View shows a board and information, e.g., undo possible
See PuzzleView interface, implemented by 
application and applet

Software Design
9.16

Puzzle MVC: Controller perspective
In this example, the PuzzleController is a middleman, all 
communication between views and model via controller

Sometimes a middleman class isn’t a good idea, extra 
layer of code that might not be needed
Often in MVC model communicates with multiple 
views, but communication to model via controller

In this example one controller holds all the views and 
executes commands in all views on behalf of model

Model only calls showBoard in controller
Some of the “intelligence” is in controller, arguably 
should be in model

Controller is a candidate for refactoring



Software Design
9.17

Controller and Commands
Use-case for making a move:

Move generated, e.g., by button-click
Move forwarded to model (by controller)
• If move is made, then undo state set to true in views
• If move is made, then views update board display

Use-case for undoing a move
Undo generated, e.g., by button or menu choice
Undo forwarded to model (by controller)
• If undo changes board, views will be updated
• If future undo not possible, undo state set to false

ShowBoard and Undo are both Command classes
Command implemented using hook/template method

Software Design
9.18

Hook method and Template Pattern
Client code (Controller) calls a command’s execute 
method, all Commands have such a method

Execute always has a view parameter
Execute has optional other parameter for information

The execute method is the same in every Command, 
forwards to the hook method

Subclasses of ViewCommand implement hook in 
application specific way
• Showing board calls appropriate method in view
• Undo calls appropriate method in view

Software Design
9.19

Lower level JButton particulars
PuzzleGui class has panel/grid of buttons for display

Pressing button causes action (via controller)
Button is displayable, but doesn’t have label
• If button had label, it would be automatically shown

Instead, use setActionCommand to store command
• Retrieved by getActionCommand, but not a label

Button has icon, automatically displayed

The Icon interface (swing) implemented by ImageIcon
See PlainPuzzleIcon and ImagePuzzleIcon
An Icon doesn’t typically grow, but in this application 
we want it to resize when app is resized

Software Design
9.20

What about a “real game”
How to make this a game? What are use cases/scenarios?

Shuffle pieces initially, pick random piece near blank 
and move it, repeat 5, 10, 20 times [degree of difficulty]

How does this facilitate auto-solve?
What about showing the numbered tiles as a hint 
when just image puzzle used by client

Auto-complete, we can undo string of moves, track all
Coalesce moves that are redundant
Recognize previous state of board and go back


