
Design Patterns for Games

Dung (“Zung”) Nguyen and Stephen B. Wong
Dept. of Computer Science

Rice University
Houston, TX 77005

dxnguyen@rice.edu, swong@rice.edu

Abstract

Designing a two-person game involves identifying the
game model to compute the best moves, the user interface
(the “view”) to play the game, and the controller to
coordinate the model and the view. A crucial task is to
represent the algorithms used in their highest abstract
forms. This can prove to be a difficult and subtle endeavor.
It is made easier however by the use of good object-
oriented (OO) design principles to help maintain a high
level abstract viewpoint during the design process. The
state pattern is used to represent the game board and is
coupled with the visitor pattern to provide state-dependent,
variant behaviors. The min -max algorithm and its variants
are implemented as the strategy pattern, which allows
flexible and extensible computational capability. Careful
analysis is performed to properly abstract the interactions
between the model and the view. The command design
pattern is used to provide callback services between the
model and the view. Leading students through this design
process enables them to learn algorithms and architectures
that easily scale to full-sized applications.

1 Introduction

Standard data structures and algorithms courses cover game
trees, and in particular, the min-max principle, to compute
the values of the game tree nodes and select the best next
move. Even though these algorithms are initially described
in high-level abstract terms, this is not reflected in their
standard implementations (See for example, [1].) Instead
the algorithm code is intertwined with low-level game
board implementation details. This not only obscures the
essence of the solution, but also makes it impossible to re-
use in different types of games. Students end up writing
essentially “throw-away” code.

To remedy this situation, we seek to design an OO model
for two-person games that enables us to express all facets
of the games at the highest level of abstraction. The result
is a system of cooperating objects that possesses many of
the valued qualities in software engineering: correctness,
robustness, extensibility, flexibility, and reusability. We
lead students through this design process to teach them
about abstract problem decomposition, how design patterns
can shape their thinking in OO design, understanding
system architectures, and expressing algorithms in their
most abstract forms.

We apply the Model-View-Controller (MVC) pattern to the
overall architecture of the program. The MVC pattern calls
for decomposing the overall system into three subsystems:
the model, the view, and the controller. Section 2 details
the analysis of the model, which consists of the game tree
and the various algorithms that compute the next moves
from a given tree node. Section 3 focuses on the
interactions between the view and the model and the
interfaces through which they communicate. And finally in
Section 4, we illustrate our design with the familiar game
of Tic -Tac-Toe.

We should stress here that the development of an OO game
system must be part of a larger OOP/OOD pedagogy.
Before starting such a project, students must be versed in
basic OO principles as well as the core design patterns such
as the state, strategy, command and visitor patterns [2].

2 The Model

In this paper, for simplicity, we will restrict our discussion
to two-dimensional game boards, with only two players.
The rules of a game define the legal board configurations
plus the winning and the draw (if any) configurations.
They are encapsulated by an interface called IBoardModel,
which abstractly “knows” how to transition from one legal
board configuration to another and reject any request for an
illegal move. Different concrete implementations of
IBoardModel represent different types of games. There
are a variety of algorithms to compute the next move from
a given board configuration. They are abstracted into an
interface called INextMoveStrategy. The pair,
IBoardModel and INextMoveStrategy, and their
interactions constitute the model of the game. A single
game management class, GameModel, that holds

instances of the above two interfaces can represent the total
game. The relationship between GameModel and
INextMoveStrategy is called the strategy pattern.
Separating the rules of the game and the strategy to make a
move in this manner provides the flexibility to apply the
same strategy to different types of games, and vice-versa.
The discussion that follows will further elucidate this point.

The interaction process between IBoardModel and
INextMoveStrategy is independent of whether the game is
Tic-Tac-Toe, Othello, checkers, go, etc. The interaction
between the players (human and/or computer) and the
board can thus be expressed in abstract terms. The player
requests to make a move, which the board either accepts or
rejects. Once the move is accepted, the game progresses
into one of several states. These states, which are states of
the board, and not of the overall game management
process, are that player #0 has won, player #1 has won, the
game is a draw, or that the outcome has yet to be decided.
The game then proceeds in a manner that depends on the
current state of the board. This includes terminating the
game, or requesting that another move be made.

Invalid Move State

Non-terminal State
(No winner yet)

Player #0 Wins

Player #1 Wins

Draw Game

Terminal States

Valid Move State

Figure 1. Game board state diagram

The overall state diagram of the board in Figure 1 shows
that the board consists of both concrete states and
superstates. The state design pattern can be used to model
these states. Superstates are depicted as abstract super-
classes of the concrete states they contain. At the top level
of the hierarchy is an interface called IBoardState. The
visitor design pattern is used to provide state-dependent
abstract behaviors (For a complete discussion of this
technique, see [3]). The visitor interface
IBoardStatusVisitor , contains methods corresponding to
the various states of the game board and the board provides
a means for executing (“accepting”) those visitors. Only

the method associated with the current state of the board is
called when the board accepts the visitor.

While it is extremely important to understand the state
nature of a problem before attempting to craft a solution, it
is not always necessary to represent all the states as classes.
When the algorithm used to determine the state of the
system completes its task, a visitor’s appropriate method
can be called immediately, without actually setting the
system into a static concrete state. We refer to this as a
“virtual state” as the visitor believes that the system has
transitioned into a concrete state because its corresponding
method was called, when in fact, no actual concrete state
exists. There are limitations to this approach however. In
particular, it is really only useful if the system expects to
immediately transition out of that “virtual” state. Here, the
only states that satisfy that restriction are the invalid move
state and the valid move superstate.

This des ign exploits direct dispatching via polymorphism
and results in game management code that is devoid of the
usual tangle of conditionals needed to determine the
game’s behavior under different circumstances. Instead,
the different cases are encapsulated into separate methods
of the visitors and can be thought of as services proffered
by the game manager to the board.

To find the best next move, a player would assign values to
the children states of the current state and select the one
with the highest value as the next move. The function V(s)
that computes the value of a state s is commonly based on
the min-max principle, which can be expressed as follows:

V(s) =

?? 1, if s is a winning state for that player
?? 0, if s is a draw state
?? -1, if s is a losing state for that player
?? Either:

o max{V(c) | c is a child valid move
state of s}, if that player moves next.

o min{V(c) | c is a child valid move state
of s}, if the other player moves next.

A common approach to computing the max and min is to
iterate over the available states. This involves casting the
set of available states into some sort of linear ordering. But
the statement of the min-max principle is not dependent on
any linear ordering of the set. It simply prescribes a
recursive application of V(s) onto the set. This is akin to
the higher order function called “map”, familiar to
functional programming practitioners. We thus express the
min-max algorithm in terms of a map function rather than
iteration. Since the actual map function is independent of
the algorithm, it belongs as a service provided by the game
board, and not as an integral part of the algorithm. The
map method provided by the IBoardModel takes an
abstract “lambda” object, IBoardLambda, and a generic

input parameter. The map() method only depends on
whether or not the board’s state is terminal, hence
IBoardLambda has two corresponding methods: apply()
for the non-terminal state and noApply() for the terminal
states. The map method applies the lambda (with its input
parameter) to all available valid move states from the
current state. The lambda asks the board to make a move
which also checks the status of the board, and recurs if
necessary by asking the board to map it again. For
efficiency reasons, it is best to accumulate the current
extremum value and corresponding best move during the
mapping. The responsibility to carry out this task is
assigned to an abstract accumulator class, AAccumulator.
It has an abstract updateBest() method that
polymorphically performs the min or max determination
both trivially and transparently, takes care of saving the
maximum value (for this player) or the minimum value (for
the other player) and its associated move and stores the
result. It also has a factory method, makeOpposite() , to
instantiate an accumulator for the other player.

Figure 2. UML class diagram of the model
(implemented methods have been omitted.)

The min-max algorithm can now be formulated as a class
MinMax that implements INextMoveStrategy. Its method
to compute the best next move is rephrased in the following
OO terms.

Ask the IBoardModel, board, to map the following
recursive “helper” IBoardLambda, onto all valid moves
from the current state with an appropriate initial
AAccumulator, say acc.

1. Ask board to make the current move, passing it an
IBoardStatusVisitor to do one of the following
tasks associated with a possible resulting state.
?? Player won: pass the current move and the

value +1 to acc.updateBest().
?? Player lost: pass the current move and the

value -1 to acc.updateBest().
?? Draw: pass the current move and the value 0 to

acc.updateBest() .
?? Non-terminal state:

i. Ask board to map this helper algorithm
onto the now available valid states with a
new accumulator, nextAcc, for the other
player.

ii. Pass the current move and the value
obtained from nextAcc to
acc.updateBest() .

2. Ask board to undo the current move.

When the algorithm is finished, the initial accumulator,
acc, will hold the best next move with its corresponding
value.

The min-max algorithm formulated as shown does not rely
on any concrete implementation of IBoardModel. Thus it
can be used with any concrete type of games, as advertised
earlier in the discussion. It involves no external iterative
loops, and closely approximates the abstraction of the min-
max principle, making the code easier to write, more
robust, more likely to be correct, and more flexible than
traditional implementations. The Java code for the above
OO formulation is almost a word-for-word translation.

3 Model-View Interactions

When setting up a MVC system, one must abstract both the
model and view to discover the essential interfaces that
they must present to each other. Novices are often tempted
to create elaborate interfaces with every bell and whistle
available. This approach often violates the encapsulation
of which behaviors are strictly in the model or view’s
domain. In a two-person board game, the model has only
three public methods: it must be able to accept a request to
make a move by a player to a particular location on the
board, reset to an initial condition, and be told which player
it represents. On the other hand, the view has four public
methods: it must be able to be notified of a valid move, be

told that a specific player has won, be told that the game
ended in a draw, and reset to an initial condition. In
addition to these interactions, the model needs a
mechanism for communicating a rejected move request
back to the view.

Figure 3. Model-View interfaces

From their respective viewpoints, the model and the view
each hold two “commands” in design pattern parlance; a
move-making command, IRequestor and ICommand, and
an administrative command, IModelAdmin and
IViewAdmin (see Figure 3). From the larger perspective
that includes both the model and the view we see that these
commands are actually adapter design patterns which
translate the interface the model/view expects to see of the
view/model into the actual public interface presented by
each. Commands and adapters decouple senders from
receivers, here, the view from the model. A discussion of
the dynamic behavior of this system is best illustrated with
a UML sequence diagram, regrettably omitted here for
space considerations.

One of the major advantages of a MVC design, the ability
to transparently change the view on a model, is easily
demonstrated with our system. A GUI-type interface
simply uses event-handlers to execute the request
command. For instance, suppose each Tic-Tac-Toe square
was displayed as a button. Each button’s event handler
makes a direct call to the request handler,
IRequestor.setToken(). Note that no conditionals are
needed because each button intrinsically knows its own
row and column information. In turn, the GUI view
responds to the model calling its ICommand object’s
setToken() method by placing the appropriate mark on the
specified row and column on the screen. But one can
easily replace the GUI view with a console-type view
which parses command line input and calls its IRequestor
object’s setToken() with the correct information.
Likewise, it can respond to the model’s call to its
ICommand object’s setToken() by typing an appropriate
message on the console.

Our MVC implementation exploits the power of inner
classes in Java. We use factory methods in the model and
the view to dynamically instantiate the IRequestor and

ICommand objects respectively as anonymous inner
classes. These inner classes have private access to their
closures, which are their instantiating hosts, even though
they are “installed” into another object. Thus the
IRequestor and ICommand objects have direct, internal
access to the model and the view respectively. Likewise,
the rejection callback command, IRejectCommand , is
implemented as an anonymous inner class instantiated by
the view and passed to the model during its call to the
IRequestor object’s setToken() method. If the request is
rejected, the IRejectCommand has direct access to the
view, in the context in which request was made. This
makes context -sensitive error messages trivial because the
IRejectCommand knows the specific information
pertaining to the request.

The controller’s role in the MVC is to “wire” the view to
the model. Often this involves instantiating adapters to
patch the view and model together. Inner classes for
adapters are a favorite again for their unique scoping
capabilities. In our implementation however, since both
the model and the view are factories for the required
interfaces, plus they directly implement the administrative
interfaces, the controller’s wiring job is trivial.

4 Tic-Tac-Toe Example

In our implementation (Figure 2), GameModel generically
models a two-player board game. GameModel does not
contain any code specific to Tic-Tac-Toe. It merely
moderates the interactions between the board,
IBoardModel and the strategy to compute the next move,
INextMoveStrategy . GameModel.getRequestor() is
the factory method to instantiate the IRequestor for the
view. GameModel directly implements the IModelAdmin
interface.

We implement a Tic-Tac-Toe specific game board,
TicTacToeBoard, using the state pattern coupled with the
visitor pattern. The board states, as described in Figure 1,
are modeled as sub-types of an interface, IBoardState.
The terminal superstate, ATerminalState, is represented as
an abstract parent to the concrete Player0WonState,
Player1WonState, and DrawState. The invalid move
state and valid move superstate are virtual states.

Communication to/from the GameModel and the
IBoardModel is handled via three main visitors:
IBoardStatusVisitor , ICheckMoveVisitor, and
IBoardLambda. IBoardStatusVisitor, with its four cases
corresponding to the four concrete states of the board, is
accepted by the execute() method of IBoardModel. Thus
IBoardStatusVisitor can be used to implement any generic
algorithm on the board that depends on its state.
IBoardModel.makeMove() takes row/col, and player
inputs as well as both an ICheckMoveVisitor and an
IBoardStatusVisitor parameter. The ICheckMoveVisitor

is used to provide behavior depending on the virtual invalid
move state vs. the virtual valid move superstate. Typically
it is used to notify the view whether or not a move request
was accepted. After the board accepts and performs a
move, the board may change state. Thus the makeMove()
method will automatically execute the supplied
IBoardStatusVisitor after the move is performed. During
normal game play, this is how the view is informed if the
game was won/lost or ended in a draw. The min-max
strategy uses this to either determine the value function’s
return or to recur to the next level.

Listing 1 shows the code to implement the
GameBoard.getRequestor() method, illustrating the use
of anonymous inner classes, and how code normally
implemented with conditionals to differentiate between
board states is replaced with simple listings of cases. The
single line of code in IRequestor.setToken() simply
delegates the call to the board’s (boardModel’s)
makeMove() method. But in doing so, it creates the
visitors the board uses to communicate the resulting state
information all the way back out to the view. The
ICheckMoveVisitor and the IBoardStatusVisitor are thus
two of makeMove()’s five input parameters.

public IRequestor getRequestor() {
 return new IRequestor() { //user makes move using requestor
 public void setTokenAt(final int row, final int col, final
 int player, final IRejectCommand rejectCommand) {
 boardModel.makeMove(row, col, player,
 new ICheckMoveVisitor() {
 public void invalidMoveCase() {
 rejectCommand.execute(); // Tell view
 }
 public void validMoveCase() { // Tell view
 iCommand.setTokenAt(row, col, player);
 }
 },
 new IBoardStatusVisitor() {
 public Object player0WonCase(IBoardModel host,

Object param) {
 viewAdmin.win(0); return null; // Tell view
 }
 public Object player1WonCase(IBoardModel host,

Object param) {
 viewAdmin.win(1); return null; // Tell view
 }
 public Object drawCase(IBoardModel host,

Object param) {
 viewAdmin.draw(); return null; // Tell view
 }
 public Object noWinnerCase(IBoardModel host,

Object param) {
 makeMove(player); return null; //Computer’s turn
 }
 });
 }
 };
 }.

Listing 1. IRequestor factory method

Because they are inner classes, GameModel is the closure
of the IRequestor object as well as the

ICheckMoveVisitor and IBoardStatusVisitor the
IRequestor contains. The mediation between the various
components of the system is taking place through that
closure while retaining a proper decoupling of components.

5 Conclusion

This exercise of designing a game system demonstrates the
power of properly abstracting a problem and then of
matching the code to that abstraction. The benefits of
algorithm simplification with increased robustness and
flexibility are readily apparent. Tangled stacks of
conditionals are replaced with declarative statements listing
the relevant cases derived from the state analysis of the
problem. The OO design process entails identifying the
variant behaviors of the system, encapsulating them into
abstract subsystems and decoupling them from the
invariant core. Design patterns are used extensively to
achieve the proper abstractions and decouplings. The result
is a system that can be easily modified, upgraded or
adapted. The students are able to scale-up the ideas learned
here into full-sized software projects. For instance, a fun
exercise for the students is to have them adapt their Tic -
Tac-Toe code to handle Othello instead. They discover
that the only variant in the system is the board--the rest is
unchanged! The lesson is that generic concepts such as
game management and min-max principles should lead to
generic applicability, not single-use, “throw away” code.
The students learn “programming-in-the-large” while
studying a system that is still small enough to manage.

A side benefit to the OO design used here is a
demonstration of the integration of OO and functional
ideas. Concepts such as map, lambda functions, and
closures, normally relegated only to courses in functional
languages, are shown to be fundamental computer science
principles that span programming paradigms.

Games are an effective vehicle for teaching students
abstraction and the OO design process. The students easily
see the power, utility, flexibility and scalability of the
design. This strongly motivates them to expand their
horizons and tackle larger, more complex problems.

References

[1] Weiss, A., Data Structures and Problem Solving Using

Java, Addison-Wesley, 1998

[2] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.

Design Patterns, Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[3] Nguyen, D. and Wong, S. Design Patterns for

Decoupling Data Structures and Algorithms, SIGCSE
Bulletin, 31, 1, March 1999, 87-91.

