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Abstract 
 
Designing a two-person game involves identifying the 
game model to compute the best moves, the user interface 
(the “view”) to play the game, and the controller to 
coordinate the model and the view.  A crucial task is to 
represent the algorithms used in their highest abstract 
forms.  This can prove to be a difficult and subtle endeavor.  
It is made easier however by the use of good object-
oriented (OO) design principles to help maintain a high 
level abstract viewpoint during the design process.  The 
state pattern is used to represent the game board and is 
coupled with the visitor pattern to provide state-dependent, 
variant behaviors.  The min -max algorithm and its variants 
are implemented as the strategy pattern, which allows 
flexible and extensible computational capability.  Careful 
analysis is performed to properly abstract the interactions 
between the model and the view.  The command design 
pattern is used to provide callback services between the 
model and the view.  Leading students through this design 
process enables them to learn algorithms and architectures 
that easily scale to full-sized applications. 
 
1 Introduction 

 
Standard data structures and algorithms courses cover game 
trees, and in particular, the min-max principle, to compute 
the values of the game tree nodes and select the best next 
move.  Even though these algorithms are initially described 
in high-level abstract terms, this is not reflected in their 
standard implementations (See for example, [1].)  Instead 
the algorithm code is intertwined with low-level game 
board implementation details.  This not only obscures the 
essence of the solution, but also makes it impossible to re-
use in different types of games.  Students end up writing 
essentially “throw-away” code. 
 

To remedy this situation, we seek to design an OO model 
for two-person games that enables us to express all facets 
of the games at the highest level of abstraction.  The result 
is a system of cooperating objects that possesses many of 
the valued qualities in software engineering: correctness, 
robustness, extensibility, flexibility, and reusability.  We 
lead students through this design process to teach them 
about abstract problem decomposition, how design patterns 
can shape their thinking in OO design, understanding 
system architectures, and expressing algorithms in their 
most abstract forms. 
 
We apply the Model-View-Controller (MVC) pattern to the 
overall architecture of the program. The MVC pattern calls 
for decomposing the overall system into three subsystems: 
the model, the view, and the controller.  Section 2 details 
the analysis of the model, which consists of the game tree 
and the various algorithms that compute the next moves 
from a given tree node.  Section 3 focuses on the 
interactions between the view and the model and the 
interfaces through which they communicate.  And finally in 
Section 4, we illustrate our design with the familiar game 
of Tic -Tac-Toe. 
 
We should stress here that the development of an OO game 
system must be part of a larger OOP/OOD pedagogy.  
Before starting such a project, students must be versed in 
basic OO principles as well as the core design patterns such 
as the state, strategy, command and visitor patterns [2]. 
 
2 The Model 
 
In this paper, for simplicity, we will restrict our discussion 
to two-dimensional game boards, with only two players.  
The rules of a game define the legal board configurations 
plus the winning and the draw (if any) configurations.  
They are encapsulated by an interface called IBoardModel, 
which abstractly “knows” how to transition from one legal 
board configuration to another and reject any request for an 
illegal move.  Different concrete implementations of 
IBoardModel represent different types of games.  There 
are a variety of algorithms to compute the next move from 
a given board configuration.  They are abstracted into an 
interface called INextMoveStrategy.  The pair, 
IBoardModel and INextMoveStrategy, and their 
interactions constitute the model of the game.  A single 
game management class, GameModel, that holds 

 



instances of the above two interfaces can represent the total 
game.  The relationship between GameModel  and 
INextMoveStrategy  is called the strategy pattern.  
Separating the rules of the game and the strategy to make a 
move in this manner provides the flexibility to apply the 
same strategy to different types of games, and vice-versa.  
The discussion that follows will further elucidate this point.   
 
The interaction process between IBoardModel and 
INextMoveStrategy  is independent of whether the game is 
Tic-Tac-Toe, Othello, checkers, go, etc.  The interaction 
between the players (human and/or computer) and the 
board can thus be expressed in abstract terms.  The player 
requests to make a move, which the board either accepts or 
rejects.  Once the move is accepted, the game progresses 
into one of several states.  These states, which are states of 
the board, and not of the overall game management 
process, are that player #0 has won, player #1 has won, the 
game is a draw, or that the outcome has yet to be decided.  
The game then proceeds in a manner that depends on the 
current state of the board.  This includes terminating the 
game, or requesting that another move be made. 
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Figure 1.  Game board state diagram 
 
The overall state diagram of the board in Figure 1 shows 
that the board consists of both concrete states and 
superstates.  The state design pattern can be used to model 
these states.  Superstates are depicted as abstract super-
classes of the concrete states they contain.  At the top level 
of the hierarchy is an interface called IBoardState.  The 
visitor design pattern is used to provide state-dependent 
abstract behaviors (For a complete discussion of this 
technique, see [3]).  The visitor interface 
IBoardStatusVisitor , contains methods corresponding to 
the various states of the game board and the board provides 
a means for executing (“accepting”) those visitors.  Only 

the method associated with the current state of the board is 
called when the board accepts the visitor. 
 
While it is extremely important to understand the state 
nature of a problem before attempting to craft a solution, it  
is not always necessary to represent all the states as classes.  
When the algorithm used to determine the state of the 
system completes its task, a visitor’s appropriate method 
can be called immediately, without actually setting the 
system into a static concrete state.  We refer to this as a 
“virtual state” as the visitor believes that the system has 
transitioned into a concrete state because its corresponding 
method was called, when in fact, no actual concrete state 
exists.  There are limitations to this approach however.  In 
particular, it is really only useful if the system expects to 
immediately transition out of that “virtual” state.  Here, the 
only states that satisfy that restriction are the invalid move 
state and the valid move superstate. 
 
This des ign exploits direct dispatching via polymorphism 
and results in game management code that is devoid of the 
usual tangle of conditionals needed to determine the 
game’s behavior under different circumstances.  Instead, 
the different cases are encapsulated into separate methods 
of the visitors and can be thought of as services proffered 
by the game manager to the board. 
 
To find the best next move, a player would assign values to 
the children states of the current state and select the one 
with the highest value as the next move.  The function V(s) 
that computes the value of a state s is commonly based on 
the min-max principle, which can be expressed as follows: 
 
V(s) =  

?? 1, if s is a winning state for that player 
?? 0, if s is a draw state 
?? -1, if s is a losing state for that player 
?? Either: 

o max{V(c) | c is a child valid move 
state of s}, if that player moves next. 

o min{V(c) | c is a child valid move state 
of s}, if the other player moves next. 

 
A common approach to computing the max and min is to 
iterate over the available states.  This involves casting the 
set of available states into some sort of linear ordering.  But 
the statement of the min-max principle is not dependent on 
any linear ordering of the set.  It simply prescribes a 
recursive application of V(s) onto the set.  This is akin to 
the higher order function called “map”, familiar to 
functional programming practitioners.  We thus express the 
min-max algorithm in terms of a map function rather than 
iteration.  Since the actual map function is independent of 
the algorithm, it belongs as a service provided by the game 
board, and not as an integral part of the algorithm.  The 
map method provided by the IBoardModel takes an 
abstract “lambda” object, IBoardLambda, and a generic 



input parameter.  The map()  method only depends on 
whether or not the board’s state is terminal, hence 
IBoardLambda has two corresponding methods: apply() 
for the non-terminal state and noApply() for the terminal 
states.  The map method applies the lambda (with its input 
parameter) to all available valid move states from the 
current state.  The lambda asks the board to make a move 
which also checks the status of the board, and recurs if 
necessary by asking the board to map it again.  For 
efficiency reasons, it is best to accumulate the current 
extremum value and corresponding best move during the 
mapping.  The responsibility to carry out this task is 
assigned to an abstract accumulator class, AAccumulator.  
It has an abstract updateBest() method that 
polymorphically performs the min or max determination 
both trivially and transparently, takes care of saving the 
maximum value (for this player) or the minimum value (for 
the other player) and its associated move and stores the 
result.  It also has a factory method, makeOpposite() , to 
instantiate an accumulator for the other player. 
 

 
 
Figure 2.  UML class diagram of the model 
(implemented methods have been omitted.) 
 

The min-max algorithm can now be formulated as a class 
MinMax that implements INextMoveStrategy.  Its method 
to compute the best next move is rephrased in the following 
OO terms. 
 
Ask the IBoardModel, board, to map the following 
recursive “helper” IBoardLambda, onto all valid moves 
from the current state with an appropriate initial 
AAccumulator, say acc. 
 

1. Ask board to make the current move, passing it an 
IBoardStatusVisitor to do one of the following 
tasks associated with a possible resulting state. 
?? Player won: pass the current move and the 

value +1 to acc.updateBest(). 
?? Player lost: pass the current move and the 

value  -1 to acc.updateBest(). 
?? Draw: pass the current move and the value 0 to 

acc.updateBest() . 
?? Non-terminal state:  

i. Ask board to map this helper algorithm 
onto the now available valid states with a 
new accumulator, nextAcc, for the other 
player. 

ii. Pass the current move and the value 
obtained from nextAcc to 
acc.updateBest() . 

2. Ask board to undo the current move. 
 

When the algorithm is finished, the initial accumulator, 
acc, will hold the best next move with its corresponding 
value. 
 
The min-max algorithm formulated as shown does not rely 
on any concrete implementation of IBoardModel.  Thus it 
can be used with any concrete type of games, as advertised 
earlier in the discussion.  It involves no external iterative 
loops, and closely approximates the abstraction of the min-
max principle, making the code easier to write, more 
robust, more likely to be correct, and more flexible than 
traditional implementations.  The Java code for the above 
OO formulation is almost a word-for-word translation. 
 
3 Model-View Interactions 
 
When setting up a MVC system, one must abstract both the 
model and view to discover the essential interfaces that 
they must present to each other.  Novices are often tempted 
to create elaborate interfaces with every bell and whistle 
available.  This approach often violates the encapsulation 
of which behaviors are strictly in the model or view’s 
domain.  In a two-person board game, the model has only 
three public methods: it must be able to accept a request to 
make a move by a player to a particular location on the 
board, reset to an initial condition, and be told which player 
it represents.  On the other hand, the view has four public 
methods: it must be able to be notified of a valid move, be 



told that a specific player has won, be told that the game 
ended in a draw, and reset to an initial condition.  In 
addition to these interactions, the model needs a 
mechanism for communicating a rejected move request 
back to the view. 
 

 
 
Figure 3.  Model-View interfaces  
 
From their respective viewpoints, the model and the view 
each hold two “commands” in design pattern parlance; a 
move-making command, IRequestor  and ICommand, and 
an administrative command, IModelAdmin  and 
IViewAdmin  (see Figure 3).  From the larger perspective 
that includes both the model and the view we see that these 
commands are actually adapter design patterns which 
translate the interface the model/view expects to see of the 
view/model into the actual public interface presented by 
each.  Commands and adapters decouple senders from 
receivers, here, the view from the model.  A discussion of 
the dynamic behavior of this system is best illustrated with 
a UML sequence diagram, regrettably omitted here for 
space considerations. 
 
One of the major advantages of a MVC design, the ability 
to transparently change the view on a model, is easily 
demonstrated with our system.  A GUI-type interface 
simply uses event-handlers to execute the request 
command.  For instance, suppose each Tic-Tac-Toe square 
was displayed as a button.  Each button’s event handler 
makes a direct call to the request handler, 
IRequestor.setToken().  Note that no conditionals are 
needed because each button intrinsically knows its own 
row and column information.  In turn, the GUI view 
responds to the model calling its ICommand object’s 
setToken() method by placing the appropriate mark on the 
specified row and column on the screen.  But one can 
easily replace the GUI view with a console-type view 
which parses command line input and calls its IRequestor 
object’s  setToken() with the correct information.  
Likewise, it can respond to the model’s call to its 
ICommand object’s  setToken() by typing an appropriate 
message on the console. 
 
Our MVC implementation exploits the power of inner 
classes in Java.  We use factory methods in the model and 
the view to dynamically instantiate the IRequestor and 

ICommand  objects respectively as anonymous inner 
classes.  These inner classes have private access to their 
closures, which are their instantiating hosts, even though 
they are “installed” into another object.  Thus the 
IRequestor and ICommand objects have direct, internal 
access to the model and the view respectively.  Likewise, 
the rejection callback command, IRejectCommand , is 
implemented as an anonymous inner class instantiated by 
the view and passed to the model during its call to the 
IRequestor object’s  setToken() method.  If the request is 
rejected, the IRejectCommand has direct access to the 
view, in the context in which request was made.  This 
makes context -sensitive error messages trivial because the 
IRejectCommand knows the specific information 
pertaining to the request. 
 
The controller’s role in the MVC is to “wire” the view to 
the model.  Often this involves instantiating adapters to 
patch the view and model together.  Inner classes for 
adapters are a favorite again for their unique scoping 
capabilities.  In our implementation however, since both 
the model and the view are factories for the required 
interfaces, plus they directly implement the administrative 
interfaces, the controller’s wiring job is trivial. 
 
4 Tic-Tac-Toe Example 
 
In our implementation (Figure 2), GameModel generically 
models a two-player board game.  GameModel does not 
contain any code specific to Tic-Tac-Toe.  It merely 
moderates the interactions between the board, 
IBoardModel and the strategy to compute the next move, 
INextMoveStrategy .  GameModel.getRequestor() is 
the factory method to instantiate the IRequestor  for the 
view.  GameModel directly implements the IModelAdmin  
interface. 
 
We implement a Tic-Tac-Toe specific game board, 
TicTacToeBoard, using the state pattern coupled with the 
visitor pattern.  The board states, as described in Figure 1, 
are modeled as sub-types of an interface, IBoardState.  
The terminal superstate, ATerminalState, is represented as 
an abstract parent to the concrete Player0WonState, 
Player1WonState, and DrawState.  The invalid move 
state and valid move superstate are virtual states. 
 
Communication to/from the GameModel and the 
IBoardModel is handled via three main visitors:  
IBoardStatusVisitor , ICheckMoveVisitor, and 
IBoardLambda.  IBoardStatusVisitor, with its four cases 
corresponding to the four concrete states of the board, is 
accepted by the execute() method of IBoardModel.  Thus 
IBoardStatusVisitor  can be used to implement any generic 
algorithm on the board that depends on its state.  
IBoardModel.makeMove() takes row/col, and player 
inputs as well as both an ICheckMoveVisitor and an 
IBoardStatusVisitor parameter. The ICheckMoveVisitor  



is used to provide behavior depending on the virtual invalid 
move state vs. the virtual valid move superstate.  Typically 
it is used to notify the view whether or not a move request 
was accepted.  After the board accepts and performs a 
move, the board may change state.  Thus the makeMove() 
method will automatically execute the supplied 
IBoardStatusVisitor  after the move is performed.  During 
normal game play, this is how the view is informed if the 
game was won/lost or ended in a draw.  The min-max 
strategy uses this to either determine the value function’s 
return or to recur to the next level. 
 
Listing 1 shows the code to implement the 
GameBoard.getRequestor() method, illustrating the use 
of anonymous inner classes, and how code normally 
implemented with conditionals to differentiate between 
board states is replaced with simple listings of cases.  The 
single line of code in IRequestor.setToken() simply 
delegates the call to the board’s (boardModel’s) 
makeMove()  method.  But in doing so, it creates the 
visitors the board uses to communicate the resulting state 
information all the way back out to the view.  The 
ICheckMoveVisitor and the IBoardStatusVisitor are thus 
two of makeMove()’s five input parameters. 
 
public IRequestor getRequestor()  { 
    return new IRequestor()  {  //user makes move using requestor 
        public void setTokenAt(final int row, final int col, final  
                         int player, final IRejectCommand rejectCommand)  { 
            boardModel.makeMove(row, col, player,  
                new ICheckMoveVisitor()  { 
                    public void invalidMoveCase()  { 
                        rejectCommand.execute(); // Tell view  
                    } 
                    public void validMoveCase()  { // Tell view  
                        iCommand.setTokenAt(row, col, player);  
                    } 
                }, 
                new IBoardStatusVisitor()  { 
                    public Object player0WonCase(IBoardModel host,  

Object param)  { 
                        viewAdmin.win(0);  return null; // Tell view  
                    } 
                   public Object player1WonCase(IBoardModel host,  

Object param) { 
                       viewAdmin.win(1);  return null;  // Tell view  
                   } 
                  public Object drawCase(IBoardModel host,  

Object param)   { 
                       viewAdmin.draw();  return null;  // Tell view  
                   } 
                   public Object noWinnerCase(IBoardModel host,  

Object param)   { 
                       makeMove(player);  return null;  //Computer’s turn 
                   } 
                });   
            } 
        }; 
    }. 
 
Listing 1.  IRequestor factory method 
 
Because they are inner classes, GameModel is the closure 
of the IRequestor object as well as the 

ICheckMoveVisitor and IBoardStatusVisitor the 
IRequestor contains.   The mediation between the various 
components of the system is taking place through that 
closure while retaining a proper decoupling of components.  
 
5 Conclusion 

 
This exercise of designing a game system demonstrates the 
power of properly abstracting a problem and then of 
matching the code to that abstraction.  The benefits of 
algorithm simplification with increased robustness and 
flexibility are readily apparent.  Tangled stacks of 
conditionals are replaced with declarative statements listing 
the relevant cases derived from the state analysis of the 
problem.  The OO design process entails identifying the 
variant behaviors of the system, encapsulating them into 
abstract subsystems and decoupling them from the 
invariant core.  Design patterns are used extensively to 
achieve the proper abstractions and decouplings.  The result 
is a system that can be easily modified, upgraded or 
adapted.  The students are able to scale-up the ideas learned 
here into full-sized software projects.  For instance, a fun 
exercise for the students is to have them adapt their Tic -
Tac-Toe code to handle Othello instead.  They discover 
that the only variant in the system is the board--the rest is 
unchanged!  The lesson is that generic concepts such as 
game management and min-max principles should lead to 
generic applicability, not single-use, “throw away” code.  
The students learn “programming-in-the-large” while 
studying a system that is still small enough to manage.    
 
A side benefit to the OO design used here is a 
demonstration of the integration of OO and functional 
ideas.  Concepts such as map, lambda functions, and 
closures, normally relegated only to courses in functional 
languages, are shown to be fundamental computer science 
principles that span programming paradigms. 
 
Games are an effective vehicle for teaching students 
abstraction and the OO design process.  The students easily 
see the power, utility, flexibility and scalability of the 
design.  This strongly motivates them to expand their 
horizons and tackle larger, more complex problems. 
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