Relational Model \& Algebra

CPS 216
Advanced Database Systems

Announcements (January 13)

\qquad

* Homework \#1 will be assigned on Thursday
* Reading assignment for this week
- Posted on course Web page
- Remember to register on H2O and join Duke CPS216
- Review due on Thursday night
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Relational data model

* A database is a collection of relations (or tables)
* Each relation has a list of attributes (or columns)
- Set-valued attributes not allowed
* Each attribute has a domain (or type)
\star Each relation contains a set of tuples (or rows)
- Duplicates not allowed
- Simplicity is a virtue!

Schema versus instance

* Schema (metadata)

- Specification of how data is to be structured logically
- Defined at set-up
- Rarely changes
* Instance
- Content
- Changes rapidly, but always conforms to the schema
σ Compare to type and object of type in a programming language
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

\qquad

* Schema
- Student (SID integer, name string, age integer, GPA float)
- Course (CID string, title string)
- Enroll (SID integer, CID integer) \qquad
* Instance
- $\{\langle 142$, Bart, $10,2.3\rangle,\langle 123$, Milhouse, $10,3.1\rangle, \ldots\}$
- \{ 〈CPS216, Advanced Database Systems $\rangle, \ldots\}$
- $\{\langle 142$, CPS216 $\rangle,\langle 142$, CPS214 $\rangle, \ldots\}$

Relational algebra operators

* Core set of operators:
- Selection, projection, cross product, union, difference, and renaming
* Additional, derived operators:
- Join, natural join, intersection, etc.

Selection

* Input: a table R
$\dot{*}$ Notation: $\sigma_{p}(R)$
- p is called a selection condition/predicate
* Purpose: filter rows according to some criteria
* Output: same columns as R, but only rows of R that satisfy p

Selection example

* Students with GPA higher than 3.0
$\sigma_{G P A}>3.0$ (Student $)$

\qquad
\qquad
\qquad
\qquad
\qquad

More on selection

$*$ Selection predicate in general can include any column of R, constants, comparisons such as $=, \leq$, etc., and Boolean connectives \wedge, \vee, and \neg

- Example: straight A students under 18 or over 21 $\sigma_{G P A} \geq 4.0 \wedge($ age $<18 \vee$ age $>21)($ Student $)$
* But you must be able to evaluate the predicate over a single row
- Example: student with the highest GPA

Projection

\Varangle Input: a table R
\star Notation: $\pi_{L}(R)$

- L is a list of columns in R
* Purpose: select columns to output
* Output: same rows, but only the columns in L \qquad
\qquad
\qquad
\qquad

Projection example

\qquad
$\%$ ID's and names of all students

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

More on projection

* Duplicate output rows must be removed
- Example: student ages
$\pi_{\text {age }}$ (Student)

Cross product

\star Input: two tables R and S

* Notation: $R \times S$
* Purpose: pairs rows from two tables
* Output: for each row r in R and each row s in S, output a row $r s$ (concatenation of r and s)

Cross product example

* Student \times Enroll

123	Mi house	10	3.1	142	CPS216

123	Milhouse	10	3.1	142	CPS214
123					

123	Milhouse	10	3.1	123	CPS216

123	\ldots	\ldots	\ldots	\ldots	\ldots

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A note on column ordering

\star The ordering of columns in a table is considered unimportant (as is the ordering of rows)

SID	name	age	GPA	SID	CID
142	Bart	10	2.3	142	CPS216
142	Bart	10	2.3	142	CPS214
142	Bart	10	2.3	123	CPS216
123	Mi lhouse	10	3.1	142	CPS216
123	Mi l house	10	3.1	142	CPS214
123	Mi lhouse	10	3.1	123	CPS216
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

\star That means cross product is commutative, i.e., $R \times S=S \times R$ for any R and S

Derived operator: join

$*$ Input: two tables R and S
\star Notation: $R \bowtie_{p} S$

- p is called a join condition/predicate
* Purpose: relate rows from two tables according to some criteria
\star Output: for each row r in R and each row s in S, output a row $r s$ if r and s satisfy p
* Shorthand for

Join example

* Info about students, plus CID's of their courses \qquad
Student $\bowtie_{\text {Student.SID }}=$ Enroll.SID Enroll

\qquad
\qquad
\qquad
\qquad
\qquad

Derived operator: natural join

* Input: two tables R and S
* Notation: $R \bowtie S$
* Purpose: relate rows from two tables, and
- Enforce equality on all common attributes
- Eliminate one copy of common attributes
* Shorthand for $\pi_{L}\left(R \bowtie_{p} S\right)$
- L is the union of all attributes from R and S, with duplicates removed
- p equates all attributes common to R and S

Natural join example

* Student \bowtie Enroll $=\pi_{\text {? }}($ Student \bowtie ? Enroll $)$

Union

\star Input: two tables R and S

* Notation: $R \cup S$
- R and S must have identical schema
* Output:
- Has the same schema as R and S
- Contains all rows in R and all rows in S, with duplicates eliminated

Difference

\star Input: two tables R and S

* Notation: $R-S$
- R and S must have identical schema
* Output:
- Has the same schema as R and S
- Contains all rows in R that are not found in S

Derived operator: intersection

$*$ Input: two tables R and S

* Notation: $R \cap S$
- R and S must have identical schema
* Output:
- Has the same schema as R and S
- Contains all rows that are in both R and S

Renaming

* Input: a table R
$*$ Notation: $\rho_{S}(R)$, or $\rho_{S\left(A_{1}, A_{2}, \ldots\right)}(R)$
* Purpose: rename a table and/or its columns
* Output: a renamed table with the same rows as R
* Used to
- Avoid confusion caused by identical column names
- Create identical columns names for natural joins
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Renaming example

* SID's of students who take at least two courses

Summary of core operators
\star Selection: $\sigma_{p}(R)$
\star Projection: $\pi_{L}(R)$

* Cross product: $R \times S$
$*$ Union: $R \cup S$
\star Difference: $R-S$
\star Renaming: $\rho_{S\left(A_{1}, A_{2}, \ldots\right)}(R)$
- Does not really add to processing power

Summary of derived operators

$$
\stackrel{\text { Join: }}{ } R \bowtie_{p} S
$$

* Natural join: $R \bowtie S$
* Intersection: $R \cap S$
* Many more
- Semijoin, anti-semijoin, quotient, ...

An exercise

* CID's of the courses that Lisa is NOT taking

A trickier exercise

\div SID's of students who take exactly one course

Monotone operators * If some old output rows must be removed - Then the operator is non-monotone * Otherwise the operator is monotone - That is, old output rows remain "correct" when more rows are added to the input - Formally, $R \subseteq R^{\prime}$ implies RelOp(R) \subseteq RelOp (R^{\prime})

Classification of relational operators

* Selection: $\sigma_{p}(R) \quad$ Monotone
* Projection: $\pi_{L}(R) \quad$ Monotone
* Cross product: $R \times S$ Monotone
* Join: $R \bowtie_{p} S \quad$ Monotone
* Natural join: $R \bowtie S$ Monotone
* Union: $R \cup S \quad$ Monotone
* Difference: $R-S \quad$ Non-monotone (not w.r.t. S)
* Intersection: $R \cap S$ Monotone
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why is "-" needed for "exactly one"? \qquad

* Composition of monotone operators produces a monotone query
- Old output rows remain "correct" when more rows are added to the input
* Exactly-one query is non-monotone
- Say Nelson is currently taking only CPS216
- Add another record to Enroll: Nelson takes CPS214 too
- Nelson is no longer in the answer
\star So it must use difference!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why do we need core operator X ?

\qquad

* Difference
- The only non-monotone operator
* Cross product
* Union
* Selection? Projection?
- Homework problem ©
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why is r.a. a good query language?

* Declarative?
- Yes, compared with older languages like CODASYL
- But operators are inherently procedural
* Simple
- A small set of core operators who semantics are easy to grasp
* Complete?
- With respect to what?

Relational calculus

$*$ \{ e.SID $\mid e \in$ Enroll \wedge
$\neg\left(\exists e^{\prime} \in\right.$ Enroll: e^{\prime}.SID $=$ e.SID $\left.\wedge e^{\prime} . C I D \neq e . C I D\right\}$ or
$\{$ e.SID $\mid e \in$ Enroll \wedge
($\forall e^{\prime} \in$ Enroll: $\left.e^{\prime} . S I D \neq e . S I D \vee e^{\prime} . C I D \neq e . C I D\right\}$

* Relational algebra $=$ "safe" relational calculus
- Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
- And vice versa
\star Example of an unsafe relational calculus query
- \{ s.name $\mid \neg(s \in$ Student $)\}$
- Cannot evaluate this query just by looking at the database

Turing machine?

* Relational algebra has no recursion
- Example of something not expressible in relational algebra: Given relation Parent(parent, child), who are Bart's ancestors?
*Why not recursion?
- Optimization becomes undecidable
- You can always implement it at the application level
- Recursion is added to SQL nevertheless
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

