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Relational Database Design

CPS 216

Advanced Database Systems
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Announcements (January 15)
Review for Codd paper due tonight

Follow instructions on course Web site to write reviews and post
on H2O

Reading assignment for next week (Ailamaki et al., VLDB
2001) has been posted

Due next Wednesday night
Hunt for related/follow-up work too!

Homework #1 assigned today
Look for an email regarding your DB2 account
Due February 3 (in 2 ½ weeks)
Start early!

Course project will be assigned next week
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Database (schema) design

Understand the real-world domain being modeled
Specify it using a database design model

Design models are especially convenient for schema 
design, but are not necessarily implemented by DBMS
Popular ones include

• Entity/Relationship (E/R) model
• Object Definition Language (ODL)

Translate the design to the data model of DBMS
Relational, XML, object-oriented, etc.

Apply database design theory to check the design
Create DBMS schema
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Entity-relationship (E/R) model

Historically very popular
Primarily a design model; not implemented by any major 
DBMS nowadays

Can think of as a “watered-down” object-oriented 
design model

E/R diagrams represent designs
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E/R example

Entity: a “thing,” like a record or an object

Entity set (rectangle): a collection of things of the same 
type, like a relation of tuples or a class of objects

Relationship: an association among two or more entities

Relationship set (diamond): a set of relationships of the 
same type; an association among two or more entity sets

Attributes (ovals): properties of entities or relationships, like 
attributes of tuples or objects

Students Courses
CID

title
Enroll

SID

name
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ODL (Object Definition Language)

Standardized by ODMG (Object Data Management 
Group)

Comes with a declarative query language OQL (Object 
Query Language)

Implemented by OODBMS (Object-Oriented DataBase 
Management Systems)

Object oriented

Based on C++ syntax

Class declarations represent designs
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ODL example
class Student {
attribute integer SID;
attribute string name;
relationship Set<Course> enrolledIn inverse Course::students;

};
class Course {
attribute string CID;
attribute string title;
relationship Set<Student> students inverse Student::enrolledIn;

};

Easy to map them to C++ classes
ODL attributes correspond to attributes of objects; 
complex types are allowed
ODL relationships can be mapped to pointers to other 
objects (e.g., Set<Course>→ set of pointers to objects 
of Course class)
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Not covered in this lecture

E/R and ODL design

Translating E/R and ODL designs into relational 
designs

Reference book (GMUW) has all the details

Next: relational design theory
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Relational model: review

A database is a collection of relations (or tables)

Each relation has a list of attributes (or columns)

Each attribute has a domain (or type)

Each relation contains a set of tuples (or rows)
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Keys

A set of attributes K is a key for a relation R if
In no instance of R will two different tuples agree on all 
attributes of K

• That is, K is a “tuple identifier”

No proper subset of K satisfies the above condition
• That is, K is minimal

Example: Student (SID, name, age, GPA)
SID is a key of Student
{SID, name} is not a key (not minimal)

11

Schema vs. data

Is name a key of Student?
Yes? Seems reasonable for this instance

No! Student names are not unique in general

Key declarations are part of the schema

Student

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3
... ... ... ...

12

More examples of keys

Enroll (SID, CID)
{SID, CID}

Address (street_address, city, state, zip)
{street_address, city, state}

{street_address, zip}

Course (CID, title, room, day_of_week, begin_time, end_time)
{CID, day_of_week, begin_time}

{CID, day_of_week, end_time}

{room, day_of_week, begin_time}

{room, day_of_week, end_time}

Not a good design, and we will see why later
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Usage of keys

More constraints on data, fewer mistakes

Look up a row by its key value
Many selection conditions are “key = value”

“Pointers”
Example: Enroll (SID, CID)

• SID is a key of Student

•CID is a key of Course

• An Enroll tuple “links” a Student tuple with a Course tuple

Many join conditions are “key = key value stored in 
another table”
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Motivation for a design theory

Why is this design is bad?
This design has redundancy, because the name of a student is 
recorded multiple times, once for each course the student is taking

Why is redundancy bad?
Wastes space, complicates updates, and promotes inconsistency

How about a systematic approach to detecting and 
removing redundancy in designs?

Dependencies, decompositions, and normal forms

SID name CID
142 Bart CPS216
142 Bart CPS214
857 Lisa CPS216
857 Lisa CPS230
... ... ...
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Functional dependencies

A functional dependency (FD) has the form X→ Y, 
where X and Y are sets of attributes in a relation R
X→ Y means that whenever two tuples in R agree 
on all the attributes in X, they must also agree on 
all attributes of Y

X Y Z
a b c
a ? ?
... ... ...

X Y Z
a b c
a b ?
... ... ...Must be b Could be anything
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FD examples

Address (street_address, city, state, zip)
street_address, city, state→ zip

zip→ city, state

zip, state→ zip?
This is a trivial FD

Trivial FD: LHS ⊇ RHS

zip→ state, zip?
This is non-trivial, but not completely non-trivial
Completely non-trivial FD: LHS ∩ RHS = ∅
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Keys redefined using FD’s

A set of attributes K is a key for a relation R if

K→ all (other) attributes of R
That is, K is a “super key”

No proper subset of K satisfies the above condition
That is, K is minimal
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Reasoning with FD’s

Given a relation R and a set of FD’s F

Does another FD follow from F?
Are some of the FD’s in F redundant (i.e., they follow 
from the others)?

Is K a key of R?
What are all the keys of R?
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Attribute closure

Given R, a set of FD’s F that hold in R, and a set of 
attributes Z in R:
The closure of Z (denoted Z+) with respect to F is 
the set of all attributes functionally determined by Z

Algorithm for computing the closure
Start with closure = Z
If X→ Y is in F and X is already in the closure, then 
also add Y to the closure

Repeat until no more attributes can be added
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A more complex example

StudentGrade (SID, name, email, CID, grade)

SID→ name, email

email→ SID

SID, CID→ grade

Not a good design, and we will see why later
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Example of computing closure

F includes:
SID→ name, email

email→ SID

SID, CID→ grade

{ CID, email }+ = ?

email→ SID
Add SID; closure is now { CID, email, SID }

SID→ name, email
Add name,  email; closure is now { CID, email, SID, name }

SID, CID→ grade
Add grade; closure is now all the attributes in StudentGrade

22

Using attribute closure

Given a relation R and set of FD’s F

Does another FD X→ Y follow from F?
Compute X+ with respect to F

If Y ⊆ X+, then X→ Y follow from F

Is K a key of R?
Compute K+ with respect to F

If K+ contains all the attributes of R, K is a super key

Still need to verify that K is minimal (how?)
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Useful rules of FD’s

Armstrong’s axioms
Reflexivity: If Y ⊆ X, then X→ Y
Augmentation: If X→ Y, then XZ→ YZ for any Z
Transitivity: If X→ Y and Y→ Z, then X→ Z

Rules derived from axioms
Splitting: If X→ YZ, then X→ Y and X→ Z
Combining: If X→ Y and X→ Z, then X→ YZ
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Non-key FD’s

Consider a non-trivial FD X→ Y where X is not a 
super key

Since X is not a super key, there are some attributes (say 
Z) that are not functionally determined by X

X Y Z
a b c1
a b c2
... ... ...

The fact that a is always associated with b
is recorded in multiple rows: redundancy!
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Example of redundancy

StudentGrade (SID, name, email, CID, grade)
SID→ name, email

SID name email CID grade
142 Bart bart@fox.com CPS216 B-
142 Bart bart@fox.com CPS214 B
123 Milhouse milhouse@fox.com CPS216 B+
857 Lisa lisa@fox.com CPS216 A+
857 Lisa lisa@fox.com CPS230 A+
456 Ralph ralph@fox.com CPS214 C
... ... ... ... ...
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Decomposition

Eliminates redundancy

To get back to the original relation:

SID name email CID grade
... ... ... ... ...

SID name email
142 Bart bart@fox.com
123 Milhouse milhouse@fox.com
857 Lisa lisa@fox.com
456 Ralph ralph@fox.com
... ... ...

SID CID grade
142 CPS216 B-
142 CPS214 B
123 CPS216 B+
857 CPS216 A+
857 CPS230 A+
456 CPS214 C
... ... ...
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Unnecessary decomposition

Fine: join returns the original relation

Unnecessary: no redundancy is removed, and now 
SID is stored twice!

SID name email
142 Bart bart@fox.com
123 Milhouse milhouse@fox.com
857 Lisa lisa@fox.com
456 Ralph ralph@fox.com
... ... ...SID name

142 Bart
123 Milhouse
857 Lisa
456 Ralph
... ...

SID email
142 bart@fox.com
123 milhouse@fox.com
857 lisa@fox.com
456 ralph@fox.com
... ...
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Bad decomposition

Association between CID and grade is lost

Join returns more rows than the original relation

SID CID grade
142 CPS216 B-
142 CPS214 B
123 CPS216 B+
857 CPS216 A+
857 CPS230 A+
456 CPS214 C
... ... ...

SID CID
142 CPS216
142 CPS214
123 CPS216
857 CPS216
857 CPS230
456 CPS214
... ...

SID grade
142 B-
142 B
123 B+
857 A+
857 A+
456 C
... ...
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Questions about decomposition

When to decompose

How to come up with a correct decomposition
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An answer: BCNF

A relation R is in Boyce-Codd Normal Form if
For every non-trivial FD X→ Y in R, X is a super key

That is, all FDs follow from “key → other attributes”

When to decompose
As long as some relation is not in BCNF

How to come up with a correct decomposition
Always decompose on a BCNF violation

Then it is guaranteed to be a correct decomposition!
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BCNF decomposition algorithm

Find a BCNF violation
That is, a non-trivial FD X→ Y in R where X is not a 
super key of R

Decompose R into R1 and R2, where
R1 has attributes X ∪ Y
R2 has attributes X ∪ Z, where Z contains all attributes 
of R that are in neither X nor Y

Repeat until all relations are in BCNF
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BCNF decomposition example

StudentGrade (SID, name, email, CID, grade)
BCNF violation: SID→ name, email

Student (SID, name, email) Grade (SID, CID, grade)
BCNF BCNF
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Another example

StudentGrade (SID, name, email, CID, grade)
BCNF violation: email→ SID

StudentID (email, SID)

StudentGrade’ (email, name, CID, grade)BCNF

BCNF violation: email→ name

StudentName (email, name)
Grade (email, CID, grade)BCNF

BCNF
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Recap

Functional dependencies: generalization of keys

Non-key functional dependencies: a source of redundancy

BCNF decomposition: a method of removing redundancies 
due to FD’s

BCNF: schema in this normal form has no redundancy due 
to FD’s

Not covered in this lecture: many other types of 
dependencies (e.g., MVD) and normal forms (e.g., 4NF)

GMUW has all the details

Relational design theory was a big research area in the 1970’s, but 
there is not much going on now


