
1

Indexing: Part III

CPS 216

Advanced Database Systems

2

Announcements (February 10)

Reading assignments
Query processing survey (due next Monday)

Homework #2 will be assigned this Thursday

Recitation session this Friday

Midterm and course project proposal in 3½ weeks

3

Static hashing

What if a bucket is full?

key bucket
number

hash
function

h

bucket 0

bucket 1

bucket i

bucket
N-1

ki1
ki2
ki3
…

bucket i

h(k) = i

With records or
record pointers

bucket i
overflow

bucket i
overflow

…

Does it make sense to use a hash-based index
as a sparse index on a sorted table?



2

4

Performance of static hashing

Depends on the quality of the hash function!
Best (hopefully average) case: one I/O!

Worst case: all keys hashed into one bucket!

See Knuth vol. 3 for good hash functions

Rule of thumb: keep utilization at 50%-80%

How do we cope with growth?
Extensible hashing

Linear hashing

5

Extensible hashing (TODS 1979)

Idea 1: use i bits of output by hash function and 
dynamically increase i as needed

Problem: ++i = double the number of buckets!

Idea 2: use a directory

Just double the directory size

Many directory entries can point to the same bucket

Only split overflowed buckets

“One more level of indirection solves everything!”

i
0 1 1 0 1 0 1 1h(k)

6

Extensible hashing example (slide 1)

Insert k with h(k) = 0101

Bucket too full?

++local depth, split bucket, and ++global 
depth (double the directory size) if necessary

Allowing some overflow is fine too

0101

0
1

1000

1001
0011

1

1

1
Directory Buckets

Local
depth

Global
depth

(always the max
of local depths)



3

7

Extensible hashing example (slide 2)

Split again
No directory doubling this time

0
1

1000

1001
0101

1

2

1
Directory Buckets

00112

00
10
01
11

2
Directory

11100000

Insert 1110, 0000 

8

Extensible hashing example (slide 3)

Insert 0001

1110

1001
0101

2

2

Buckets

00112

00
10
01
11

2
Directory

1000
0000

2

0001

9

Extensible hashing example (slide 4)

1110

1001
0001

2

3

Buckets

00112

00
10
01
11

2
Directory

1000
0000

2

01013

000
100
010
110
001
101
011
111

3
Directory

Delete is just the reverse:
If bucket is too empty,
merge with sibling bucket,
– – local depth; 
if possible, – – global depth
and half the directory



4

10

Summary of extensible hashing

Pros
Handles growing files

No full reorganization

Cons

11

Linear hashing (VLDB 1980)

Grow only when utilization exceeds a given 
threshold

No extra indirection
Some extra math to figure out the right bucket

Insert 0101
Threshold exceeded; grow!

0000
1010

1111

0 1

i = 1 Number of bits in use = d log2n e
n = 2 Number of primary buckets

0101

12

Linear hashing example (slide 2)

Grows linearly (hence the name)

Always split the (n – 2blog2nc)-th bucket (0-based index)
Intuitively, the first bucket with the lowest depth

Not necessarily the bucket being inserted into!

Insert 0001

0001

Insert 1100

1100

Threshold exceeded; grow!

0000 1111
0101

00 1

1010

10

i = 2
n = 3



5

13

Linear hashing example (slide 3)

0000
1100

0001
0101

00 01

1010

10

1111

11

i = 2
n = 4

1110

Insert 1110

Threshold exceeded; grow!

14

Linear hashing example (slide 4)

Look up 1110
Bucket 110 (6-th bucket) is not here

Then look in the (6 – 2blog2nc)-th bucket (= 2nd)

0000 0001
0101

000 01

1010
1110

10

1111

11

i = 3
n = 5

1100

100

15

Summary of linear hashing
Pros

Handles growing files
No full reorganization
No extra level of indirection

Cons



6

16

Hashing versus B-trees


