Query Processing with Indexes

CPS 216
Advanced Database Systems

Announcements (February 19)

* Reading assignment for next week
- Buffer management (due next Wednesday)
* Homework \#1 has been graded
- Grades will posted on Blackboard
- Sample solution available outside my office
- Bugs will be corrected in email
* Homework \#2 due next Thursday
* Midterm and course project proposal in two weeks

Review

Many different ways of processing the same query

- Scan (e.g., nested-loop join)
- Sort (e.g., sort-merge join)
- Hash (e.g., hash join)

Index

Selection using index

Equality predicate: $\sigma_{A=v}(R)$

- Use an ISAM, B^{+}-tree, or hash index on $R(A)$
* Range predicate: $\sigma_{A>v}(R)$
- Use an ordered index (e.g., ISAM or B^{+}-tree) on $R(A)$
- Hash index is not applicable
* Indexes other than those on $R(A)$ may be useful
- Example: B^{+}-tree index on $R(A, B)$
- How about B^{+}-tree index on $R(B, A)$?

Index versus table scan

Situations where index clearly wins:

* Index-only queries which do not require retrieving actual tuples \qquad
- Example: $\pi_{A}\left(\sigma_{A>v}(R)\right)$
* Primary index clustered according to search key
- One lookup leads to all result tuples in their entirety

Index versus table scan (cont'd)

\qquad
BUT(!):

* Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on $R(A)$
- Need to follow pointers to get the actual result tuples
- Say that 20% of R satisfies $A>v$
- Could happen even for equality predicates
- I/O's for index-based selection:
- I/O's for scan-based selection: $B(R)$
- Table scan wins if

Index nested-loop join

$\star R \bowtie_{R . A=S . B} S$

* Idea: use the value of $R . A$ to probe the index on $S(B)$
* For each block of R, and for each r in the block:

Use the index on $S(B)$ to retrieve s with $s . B=r . A$ Output r s

* I/O's: $B(R)+|R| \cdot$ (index lookup)
- Typically, the cost of an index lookup is 2-4 I/O's
- Beats other join methods if $|R|$ is not too big
- Better pick R to be the smaller relation
* Memory requirement: 2

Tricks for index nested-loop join

\qquad
Goal: reduce $|R| \cdot$ (index lookup)
*For tree-based indexes, keep the upper part of the tree in memory

* For extensible hash index, keep the directory in memory
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Zig-zag join using ordered indexes

\qquad
$* R \bowtie_{R . A}=s . B S$

* Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
* Trick: use the larger key to probe the other index
- Possibly skipping many keys that do not match

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

More indexes ahead!

Bitmap index

- Generalized value-list index
* Projection index

Bit-sliced index

Search key values \times tuples

Search key values	Tuples				
	0	1	2		- 1
- 8	1	1	0	...	0
9	0	0	0	...	0
10	0	0	1	...	1
26	0	0	0	...	0
108	0	0	0	...	0
-

\qquad
\qquad
\qquad
1 means tuple has the particular search key value 0 means otherwise

Bitmap index

*Value-list index—stores the matrix by rows

- Traditionally list contains pointers to tuples
- B^{+}-tree: tuples with same search key values
- Inverted list: documents with same keywords
* If there are not many search key values, and there are lots of 1's in each row, pointer list is not spaceefficient
- How about a bitmap?
- Still a B $^{+}$-tree, except leaves have a different format

Technicalities

* How do we go from a bitmap index $(0$ to $n-1)$ to the actual tuple?
* One more level of indirection solves everything
∞ Or, given a bitmap index, directly calculate the physical block number and the slot number within the block for the tuple
* In either case, certain block/slot may be invalid
- Because of deletion, or variable-length tuples
- Keep an existence bitmap: bit set to 1 if tuple exists

Bitmap versus traditional value-list

\qquad

* Operations on bitmaps are faster than pointer lists
- Bitmap AND: bit-wise AND
- Value-list AND: sort-merge join
* Bitmap is more efficient when the matrix is sufficiently dense; otherwise, pointer list is more efficient
- Smaller means more in memory and fewer I/O's
* Generalized value-list index: with both bitmap and pointer list as alternatives

Projection index

* Just store $\pi_{A}(R)$ and use it as an index!

Projection index

Why projection index?

\Varangle Idea: still a table scan, but we are scanning a much smaller table (project index)

- Savings could be substantial for long tuples with lots of attributes
* Looks familiar?
- Except that we keep the original table

Bit-sliced index

\qquad

* If a column stores binary numbers, then slice their bits vertically
- Basically a projection index by slices

Aggregate query processing example \qquad
SELECT SUM(dollar_sales)
FROM Sales WHERE condition;

* Already found $B_{f}($ a bitmap or a sorted list of TID's that point to Sales tuples that satisfy condition)
- Probably used a secondary index
* Need to compute SUM(dollar_sales) for tuples in B_{f}

SUM without any index

$*$ For each tuple in B_{f}, go fetch the actual tuple, and add dollar_sales to a running sum

* I/O’s:

SUM with a value-list index

* Assume a value-list index on Sales_dollar_sales)
* Idea: the index stores dollar_sales values and their counts (in a pretty compact form)
* sum $=0$;

Scan Sales(dollar_sales) index; for each indexed value v with value-list B_{v} :
$\operatorname{sum}+=v \times \operatorname{count}-1-\operatorname{bits}\left(B_{v}\right.$ AND $\left.B_{f}\right) ;$

* I/Os: number of blocks taken by the value-list index
* Bitmaps can possibly speed up AND and reduce the size of the index

SUM with a projection index

* Assume a project index on Sales(dollar_sales)
$*$ Idea: merge join B_{f} and the projection index, add joining tuples' dollar_sales to a running sum
- Assuming both B_{f} and the index are sorted on TID
* I/O's: number of blocks taken by the projection index
- Compared with a value-list index, the projection index may be more compact (no empty space or pointers), but it does store duplicate dollar_sales values
* Also: simpler algorithm, fewer CPU operations

SUM with a bit-sliced index

* Assume a bit-sliced index on Sales(dollar_sales), with slices $B_{k-1}, \ldots, B_{1}, B_{0}$
sum $=0$;
for $i=0$ to $k-1$:
sum $+=2^{i} \times \operatorname{count}-1-\operatorname{bits}\left(B_{i}\right.$ AND $\left.B_{f}\right) ;$
\star I/O's: number of blocks taken by the bit-sliced index
* Conceptually a bit-sliced index contains the same information as a projection index
- But the bit-sliced index does not keep TID \qquad
- Bitmap AND is faster

Summary of SUM

Best: bit-sliced index

- Index is small
- B_{f} can be applied fast!

Good: projection index
Not bad: value-list index

- Full-fledged index carries a bigger overhead
- The fact that we have counts of values helped
- But we did not really need values to be ordered

MEDIAN

SELECT MEDIAN(dollar_sales)

FROM Sales
WHERE condition;

* Same deal: already found B_{f} (a bitmap or a sorted list of TID's that point to Sales tuples that satisfy condition)

Need to find the dollar_sales value that is greater than or equal to $1 / 2 \times$ count- 1 -bits $\left(B_{f}\right)$ dollar_sales values among B_{f} tuples

MEDIAN with an ordered value-list index

$\%$ Idea: take advantage of the fact that the index is ordered by dollar_sales

* Scan the index in order, count the number of tuples that appeared in B_{f} until the count reaches $1 / 2 \times$ count-1-bits $\left(B_{f}\right)$
* I/O's: roughly half of the index
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MEDIAN with a projection index

In general, need to sort the index by dollar_sales

- Well, when you sort, you more or less get back an ordered value-list index!
* Not useful unless B_{f} is small

MEDIAN with a bit-sliced index

Tough at the first glance-index is not sorted

* Think of it as sorted
- We won't actually make use of the this fact

MEDIAN with a bit-sliced index

* median $=0$;
$B_{\text {current }}=B_{f} ; \quad / /$ which tuples we are considering
sofar $=0 ; \quad / /$ number of values that are less
// than what we are considering
for $i=k-1$ to 0 :
if (sofar + count-1-bits $\left(B_{\text {current }}\right.$ AND $\left.\operatorname{NOT}\left(B_{i}\right)\right)$ $\leq 1 / 2 \times$ count-1-bits $\left.\left(B_{f}\right)\right):$
$B_{\text {current }}=B_{\text {current }}$ AND B_{i};
sofar $+=$ count-1-bits $\left(B_{\text {current }}\right.$ AND $\operatorname{NOT}\left(B_{i}\right)$; median $+=2^{i}$;
else: $B_{\text {current }}=B_{\text {current }} \operatorname{AND} \operatorname{NOT}\left(B_{i}\right) ;$
* I/O's: still need to scan the entire index

Summary of MEDIAN

Best: ordered value-list index

- It helps to be ordered!
* Pretty good: bit-sliced index
- Could beat ordered value-list index if B_{f} is "clustered"
- Only need to retrieve the corresponding segment

More variant indexes

"Improved Query Performance with Variant Indexes," by O'Neil and Quass. SIGMOD, 1997
*MIN/MAX, and range query using bit-sliced index

* Join indexes for star schema
- Traditional: one for each combination of foreign columns
- Bitmap: one for each foreign column
\checkmark Precomputed query results (materialized views)?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Variant vs. traditional indexes

* What is the more glaring problem of these variant indexes that makes them not as widely applicable as the B^{+}-tree?
- Difficult to update
* How did the paper get away with that?
- OLAP with periodic batch updates

