
1

Query Processing: A Systems View

CPS 216

Advanced Database Systems

2

Announcements (February 24)

Reading assignment for this week due Wednesday
Homework #2 due this Thursday
Midterm and course project proposal in two weeks
Recitation session tomorrow (Wednesday)

D240, 1-2pm
Homework Q&A and project brainstorming

Midterm next Thursday in class
Open book, open notes
Covers everything up to (including) this set of slides

Project milestone 1 due next Friday

3

Physical (execution) plan

A complex query may involve multiple tables and 
various query processing processing algorithms

E.g., table scan, index nested-loop join, sort-merge join, 
hash-based duplicate elimination…

A physical plan for a query tells the DBMS query 
processor how to execute the query

A tree of physical plan operators

Each operator implements a query processing algorithm

Each operator accepts a number of input tables/streams 
and produces a single output table/stream



2

4

Examples of physical plans

Many physical plans for a single query
Equivalent results, but different costs and assumptions!

DBMS query optimizer picks the “best” possible physical plan

PROJECT (title)

INDEX-NESTED-LOOP-JOIN (CID)

Index on Enroll(SID)

Index on Course(CID)

Index on Student(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (SID)

PROJECT (title)

MERGE-JOIN (CID)

SCAN (Course)SORT (CID)

MERGE-JOIN (SID)

SCAN (Enroll)

SORT (SID)

SCAN (Student)

FILTER (name = “Bart”)

SELECT Course.title
FROM Student, Enroll, Course
WHERE Student.name = ‘Bart’
AND Student.SID = Enroll.SID AND Enroll.CID = Course.CID;

5

Physical plan execution

How are intermediate results passed from child 
operators to parent operators?

Temporary files
• Compute the tree bottom-up

• Children write intermediate results to temporary files

• Parents read temporary files

Iterators
• Do not materialize intermediate results

• Children pipeline their results to parents

6

Iterator interface

Every physical operator maintains its own execution 
state and implements the following methods:

open(): Initialize state and get ready for processing

getNext(): Return the next tuple in the result (or a null 
pointer if there are no more tuples); adjust state to allow 
subsequent tuples to be obtained

close(): Clean up



3

7

An iterator for table scan

open()
Allocate a block of memory

getNext()
If no block of R has been read yet, read the first block from the 
disk and return the first tuple in the block (or the null pointer if R
is empty)

If there is no more tuple left in the current block, read the next 
block of R from the disk and return the first tuple in the block (or 
the null pointer if there are no more blocks in R)

Otherwise, return the next tuple in the memory block

close()
Deallocate the block of memory

8

An iterator for nested-loop join

R: An iterator for the left subtree

S: An iterator for the right subtree

open()
R.open(); S.open(); r = R.getNext();

getNext()
do {

s = S.getNext();
if (s == null) {
S.close(); S.open(); s = S.getNext(); if (s == null) return null;
r = R.getNext(); if (r == null) return null;

}
} until (r joins with s);
return rs;

close()
R.close(); S.close();

NESTED-LOOP-JOIN

R S

9

An iterator for 2-pass merge sort
open()

Allocate a number of memory blocks for sorting
Call open() on child iterator

getNext()
If called for the first time

• Call getNext() on child to fill all blocks, sort the tuples, and output a run
• Repeat until getNext() on child returns null
• Read one block from each run into memory, and initialize pointers to point 

to the beginning tuple of each block

Return the smallest tuple and advance the corresponding pointer;
if a block is exhausted bring in the next block in the same run

close()
Call close() on child
Deallocate sorting memory and delete temporary runs



4

10

Blocking vs. non-blocking iterators

A blocking iterator must call getNext()
exhaustively (or nearly exhaustively) on its children 
before returning its first output tuple

Examples:

A non-blocking iterator expects to make only a few 
getNext() calls on its children before returning its 
first (or next) output tuple

Examples:

11

Execution of an iterator tree

Call root.open()
Call root.getNext() repeatedly until it returns null

Call root.close()

Requests go down the tree

Intermediate result tuples go up the tree

No intermediate files are needed
But maybe useful if an iterator is opened many times

• Example: complex inner iterator tree in a nested-loop join; “cache” its result 
in an intermediate file

12

Memory management for DBMS

DBMS operations require main memory
While data resides on disk, it is manipulated in memory

Sometimes the more memory the better, e.g., sort

One approach: let each operation pre-allocate some amount 
of “private” memory and manage it explicitly

Alternative approach: use a buffer manager
Responsible for reading/writing data blocks from/to disk as needed

Higher-level code can be written without worrying about whether 
data is in memory or not



5

13

Buffer manager basics
Buffer pool: a global pool of frames (main-memory blocks)

Some systems use separate pools for different objects (e.g., tables 
and indexes) and for different operations (e.g., sorting and others)

Higher-level code can pin and unpin a frame
Pin: I need to work on this frame in memory
Unpin: I no longer need this frame
A completely unpinned frame is a candidate for replacement
In some systems you can hate a frame (i.e., suggesting it for 
replacement)

A frame becomes dirty when it is modified
Only dirty frames need to be written back to disk
Related to transaction processing

14

Standard OS replacement policies

Example
Current buffer pool: 0, 1, 2

Past requests: 0, 1, 2

Incoming requests: 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, …

Which frame to replace?

Optimal: replace the frame that will not be used for the 
longest time (2)

Random (0, 1, or 2 with equal probability)

LRU: least recently used (0)

LRU approximation: clock, aging

MRU: most recently used (2)

15

Problems with OS buffer management
Stonebraker. “Operating System Support for Database Management.” CACM, 1981.

Performance problems
Getting a page from the OS to user space is usually a system call 
(process switch) and copy

Replacement policy

Prefetch policy

Crash recovery



6

16

Next
Chou and DeWitt. “An Evaluation of Buffer Management Strategies for 

Relational Database Systems.” VLDB 1985.

Old algorithms
Domain separation algorithm

“New” algorithm

Hot set algorithm

Query locality set model

DBMIN algorithm

17

Domain separation algorithm

Split work/memory into domains; LRU within each domain; 
borrow from other domains when out of frames

Example: one domain for each level of the B+-tree

Limitations
Assignment of pages to domains is static, and ignores how pages 
are used

• Example: A data page is accessed only once in a scan, but the same data 
page is accessed many times in a NLJ

Does not differentiate relative importance between types of pages
• Example: An index page is more important than a data page

Memory allocation is based on data rather queries → need 
orthogonal load control to prevent thrashing

18

The “new” algorithm

Observations based on the reference patterns of queries
Priority is not a property of a data page, but of a relation

Each relation needs a “working set”

Divide buffer pool into chunks, one per relation

Prioritize relations according to how often their pages are 
reused

Replace a frame from the least reused relation and add it to 
the chunk of the referenced relation

Each active relation is guaranteed with one frame

MRU within each chunk (seems arbitrary)

Simulations look good; implementation did not beat LRU



7

19

Hot set algorithm
Exploit query behavior more!
A set of pages that are accessed over and over form a hot set

“Hot points” in the graph of buffer size vs. number of page faults
Example: For nested-loop join R S, size of hot set is B(S) + 1 
(under LRU)

Each query is given enough memory for its hot set
Admission control: Do not let a query into the system 
unless its hot set fits in memory
Replacement: LRU within each hot set (seems arbitrary)
Derivation of hot set assumes LRU, which may be 
suboptimal

Example: What is better for nested-loop join?

20

Query locality set model

Observations
DBMS supports a limited set of operations

Reference patterns are regular and predictable

Reference patterns can be decomposed into simple 
patterns

Reference pattern classification
Sequential

Random

Hierarchical

21

Sequential reference patterns

Straight sequential: read something sequentially once

Clustered sequential: repeatedly read a “chunk” sequentially

Looping sequential: repeatedly read something sequentially



8

22

Random reference patterns

Independent random: truly random accesses

Clustered random: random accesses that happen to 
demonstrate some locality

23

Hierarchical reference patterns

Example: operations on tree indexes

Straight hierarchical: regular root-to-leaf traversal

Hierarchical with straight sequential: traversal 
followed by straight sequential on leaves

Hierarchical with clustered sequential: traversal 
followed by clustered sequential on leaves

Looping hierarchical: repeatedly traverse an index
Example: index nested-loop join

Keep the root index page in buffer

24

DBMIN algorithm

Associate a chunk of memory with each file instance (each 
table in FROM)

This chunk is called the file instance’s locality set

Instances of the same table may share buffered pages

But each locality set has its own replacement policy
Based on how query processing uses each relation (finally!)

No single policy for all pages accessed by a query

No single policy for all pages in a table

Estimate locality set sizes by examining the query plan and 
database statistics

Admission control: a query is allowed to run if its locality 
sets fit in free frames



9

25

DBMIN algorithm (cont’d)
Locality sets: each “owns” a set of pages, up to a limit l
Global free list: set of “orphan” pages
Global table: allow sharing among concurrent queries
Query q requests page p

If p is in memory and in q’s locality set
• Just update usage statistics of p

If p is in memory and in some other query’s locality set
• Just make p available to q; no further action is required

If p is in memory and in the global free list
• Add p to q’s locality set; if q’s locality set exceeds its size limit, replace a 

page (release it back to the global free list)

If p is not in memory
• Use a page from global free list to get p in; proceed as in the previous case

26

Locality sets for various ref. patterns

Straight sequential
Size = 1

Clustered sequential
Size = number of pages in the largest cluster

Looping sequential
Size = number of pages in the table

27

Locality sets for more ref. patterns
Independent random

Size = 1 (if odds of revisit is low), or
b (expected number of block accessed 
by a given number k of random 
record accesses; Yao, 1977)

• Use (k – b) / b to choose between 1 and b

Replacement policy does not matter

Clustered random
Size = number of blocks in the 
largest cluster (≈ number of tuples 
because of random access, or use 
Yao’s formula)
LRU or FIFO



10

28

Locality sets for more ref. patterns
Straight hierarchical, hierarchical/straight sequential: just 
like straight sequential

Size = 1

Hierarchical/clustered sequential: like clustered sequential
Size = number of index pages in the largest cluster

Looping hierarchical
At each level of the index you have random access among pages
Use Yao’s formula to figure out how many pages need to be 
accessed at each level
Size = sum over all levels that you choose to worry about

29

Simulation study

Hybrid simulation model
Trace-driven simulation

• Recorded from a real system (running Wisconsin Benchmark)

• For each query, record its execution trace
– Page read/write, file open/close, etc.

Distribution-driven simulation
• Generated by some stochastic model

• Synthesize the workload by merging query execution traces

Simulator models CPU, memory, and one disk

Performance metric: query throughput

30

Workload

Mix 1: all six types equally likely
Mix 2: I and II together appear 50% of the time
Mix 3: I and II together appear 75% of the time



11

31

Mix 1 (no data sharing)
Thrashing is evident 
for simple algorithms 
with no load control
Working set (a popular 
OS choice) fails to 
capture join loops for 
queries with high 
memory demand (types 
V and VI)

It still functions 
(though suboptimally) 
with large number of 
current queries (NCQ)

DBMIN

Hot set

Working set

32

Mix 3 (no data sharing)

Thrashing is still 
evident

Working set fares 
better because mix 3 
has more simple 
queries and fewer 
ones of types V and 
VI

DBMIN

Hot set

Working set

33

Mix 1 (full data sharing) 

With full data 
sharing, locality is 
easier to capture

Performance 
improves across the 
board and the gap 
disappears

Random and FIFO 
do not capture 
locality as effectively 
as others

DBMIN and others

Random and FIFO



12

34

Mix 3 (full data sharing)

Performance starts 
to diverge again

Mix 3 is dominated 
by lots of small 
queries, and locality 
becomes harder to 
capture

DBMIN

Hot set

Working set
Clock

Random/FIFO

35

Feedback load control

Mechanism to check resource usage in order to 
prevent system from overloading

Rule of thumb: “50% rule”—keep the paging 
device busy half of the time

Implementation
Estimator measures the utilization of device

Optimizer analyzes measurements and decides 
whether/what load adjustment is appropriate

Control switch activates/deactivates processes according 
to optimizer’s decisions

36

Mix 1 (load control, no data sharing)

DBMIN still the best

(Simple algorithms + 
load control) 
outperforms working 
set!

Cons of feedback load 
control

Runtime overhead

Non-predictive
• Only responds after 

undesirable condition 
occurs

DBMIN

Working set



13

37

Conclusion

Same basic access patterns come up again and again 
in query processing

Make buffer manager aware of these access patterns

Look at the workload, not just the content
Contents can at best offer guesses at likely workloads


