
1

XQuery

CPS 216

Advanced Database Systems

2

Announcements (March 2)

Sample midterm and sample solution for Homework
#2 available outside my office

Remember to check the bulletin board

Midterm this Thursday in class
Everything before XML

Open book, open notes

Project milestone 1 due this Friday
See project description for what and how to submit

3

XQuery

XPath + full-fledged SQL-like query language

XQuery expressions can be
XPath expressions

FLWR () expressions

Quantified expressions

Aggregation, sorting, and more…

An XQuery expression returns a result XML
document

Compare with an XPath expression, which returns a
node-set or an atomic value (boolean, number, string)

2

4

A simple XQuery based on XPath

Find all books with price lower than $50

<result>
{

document(“bib.xml”)/bibliography/book[@price<50]
}
</result>

Things outside {}’s are copied to output verbatim

Things inside {}’s are evaluated and replaced by the results
document(“bib.xml”) specifies the document to query

The XPath expression returns a set of book elements

These elements (including all their descendents) are copied to
output

5

FLWR expressions

Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for $b in document(“bib.xml”)/bibliography/book
let $p := $b/publisher
where $b/year < 2000
return

<book>
{ $b/title }
{ $p }

</book>
}</result>

for: loop
$b ranges over the result node-set,
getting one node at a time

let: assignment
$p gets the entire result of
$b/publisher (possibly many nodes)

where: filter condition
return: result structuring

Invoked in the “innermost loop,” i.e.,
once for each successful binding of all
query variables

6

An equivalent formulation

Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for $b in document(“bib.xml”)/bibliography/book[year<2000]
return

<book>
{ $b/title }
{ $b/publisher }

</book>
}</result>

3

7

Another formulation

Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for $b in document(“bib.xml”)/bibliography/book,

$p in $b/publisher
where $b/year < 2000
return

<book>
{ $b/title }
{ $p }

</book>
}</result>

Is this query equivalent to the previous two?

8

Yet another formulation

Retrieve the titles of books published before 2000,
together with their publisher

<result>{
let $b := document(“bib.xml”)/bibliography/book
where $b/year < 2000
return

<book>
{ $b/title }
{ $b/publisher }

</book>
}</result>

Is this query correct?

9

Subqueries in return

Extract book titles and their authors; make title an
attribute and rename author to writer

<bibliography>{
for $b in document(“bib.xml”)/bibliography/book
return

<book title=“{$b/title}”>{
for $a in $b/author
return <writer>{string($a)}</writer>

}</book>
}</bibliography>

4

10

An explicit join

Find pairs of books that have common author(s)

<result>{
for $b1 in document("bib.xml")//book
for $b2 in document("bib.xml")//book
where $b1/author = $b2/author
return
<pair>
{$b1/title}
{$b2/title}

</pair>
}</result>

11

Existentially quantified expressions

(some $var in node-set satisfies condition)
Can be used in where as a condition

Find titles of books in which XML is mentioned in
some section

<result>{
for $b in document(“bib.xml”)//book
where (some $section in $b//section satisfies

contains(string($section), “XML”))
return {$b/title}

}</result>

12

Universally quantified expressions

(every $var in node-set satisfies condition)
Can be used in where as a condition

Find titles of books in which XML is mentioned in
every section

<result>{
for $b in document(“bib.xml”)//book
where (every $section in $b//section satisfies

contains(string($section), “XML”))
return {$b/title}

}</result>

5

13

Aggregation
List each publisher and the average prices of all its books

<result>{
for $pub in distinct-values(document(“bib.xml”)//publisher)
let $price :=

avg(document(“bib.xml”)//book[publisher=$pub]/@price)
return

<publisherpricing>
{$pub}
<avgprice>{$price}</avgprice>

</publisherpricing>
}</result>

distinct-values(node-set) removes duplicates
• Two elements are considered duplicates if their names, attributes, and

“normalized contents” are equal (still under active discussion)

avg(node-set) computes the average of node-set (assuming each
node in node-set can be converted to a numeric value

14

Sorting (a brief history)

XPath always returns a node-set in document order

for loop will respect the ordering of nodes in a node-set

August 2002
Introduce an operator sort by (sort-by-expression-list) to output
results in a user-specified order

Example: list all books with price higher than $100, in order by
first author; for books with the same first author, order by title
<result>{

document(“bib.xml”)//book[@price>100]
sort by (author[1], title)

}</result>

15

Tricky semantics
List titles of all books, sorted by their prices

<result>{
(document(“bib.xml”)//book sort by (@price))/title

}</result>

What is wrong?
• A path expression always returns results in document order!

Correct versions
<result>{

for $b in document(“bib.xml”)//book sort by (@price)
return {$b/title}

}</result>

<result>{
document(“bib.xml”)//book/title sort by (../@price)

}</result>

6

16

Current version of sorting

As of November 2003

sort by has been ditched

Add a new order by clause in FLWR (which now becomes
FLWOR)

Example: list all books with price higher than $100, in
order by first author; for books with the same first author,
order by title

<result>{
for $b in document(“bib.xml”)//book[@price>100]
stable order by author[1], title empty least
return $b

}</result>

17

Summary
Many, many more features not covered in class
XPath is fairly mature and stable

Already a W3C recommendation
Implemented in many systems
Used in many other standards

XQuery is still evolving
Still a W3C working draft
Some vendors are coming out with implementations
To become the SQL for XML?
XQuery versus SQL

• Where did the join go?
• Weak typing
• Strong ordering constraints

