
1

XML-Relational Mapping

CPS 216

Advanced Database Systems

2

Announcements (March 18)

Midterm sample solution available outside my office

Course project milestone 2 due March 30

Homework #3 due April 6

Talk by Amol Deshpande
Adaptive Query Processing to Handle Estimation Errors

Monday, 11:30am-12:30pm, D106

Reading assignment due next Monday
Two VLDB papers on native XML databases

3

Approaches to XML processing

Text files (!)

Specialized XML DBMS
Lore (Stanford), Strudel (AT&T), Tamino/QuiP
(Software AG), X-Hive, Timber (Michigan), etc.

Still a long way to go

Object-oriented DBMS
eXcelon (ObjectStore), ozone, etc.

Not as mature as relational DBMS

Relational (and object-relational) DBMS
Middleware and/or object-relational extensions

4

Mapping XML to relational
Store XML in a CLOB (Character Large OBject) column

Simple, compact
Full-text indexing can help (often provided by DBMS vendors as 
object-relational “extensions”)
Poor integration with relational query processing
Updates are expensive

Alternatives?
Schema-oblivious mapping:
well-formed XML → generic relational schema

• Node/edge-based mapping for graphs
• Interval-based mapping for trees
• Path-based mapping for trees

Schema-aware mapping:
valid XML → special relational schema based on DTD

5

Node/edge-based: schema

Element(eid, tag)
Attribute(eid, attrName, attrValue)

Attribute order does not matter

ElementChild(eid, pos, child)
pos specifies the ordering of children

child references either Element(eid) or Text(tid)

Text(tid, value)
tid cannot be the same as any eid

Need to “invent” lots of id’s
Need indexes for efficiency, e.g., Element(tag), Text(value)

Key: (eid, attrName)

Keys: (eid, pos), (child)

6

Node/edge-based: example
<bibliography>

<book ISBN=”ISBN-10” price=”80.00”>
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

</book>…
</bibliography>

eid tag
e0 bibliography
e1 book
e2 title
e3 author
e4 author
e5 author
e6 publisher
e7 year

Element
eid pos child
e0 1 e1
e1 1 e2
e1 2 e3
e1 3 e4
e1 4 e5
e1 5 e6
e1 6 e7
e2 1 t0
e3 1 t1
e4 1 t2
e5 1 t3
e6 1 t4
e7 1 t5

ElementChild

eid attrName attrValue
e1 ISBN ISBN-10
e1 price 80

Attribute

tid value
t0 Foundations of Databases
t1 Abiteboul
t2 Hull
t3 Vianu
t4 Addison Wesley
t5 1995

Text



2

7

Node/edge-based: simple paths

//title
SELECT eid FROM Element WHERE tag = ‘title’;

//section/title
SELECT e2.eid
FROM Element e1, ElementChild c, Element e2
WHERE e1.tag = ‘section’
AND e2.tag = ‘title’
AND e1.eid = c.eid
AND c.child = e2.eid;

Path expression becomes joins!
Number of joins is proportional to the length of the path 
expression

8

Node/edge-based: more complex paths
//bibliography/book[author=“Abiteboul”]/@price

SELECT a.attrValue
FROM Element e1, ElementChild c1,

Element e2, Attribute a
WHERE e1.tag = ‘bibliography’
AND e1.eid = c1.eid AND c1.child = e2.eid
AND e2.tag = ‘book’

AND e2.eid = a.eid
AND a.attrName = ‘price’;

AND EXISTS (SELECT * FROM ElementChild c2,
Element e3, ElementChild c3, Text t

WHERE e2.eid = c2.eid AND c2.child = e3.eid
AND e3.tag = ‘author’
AND e2.eid = c3.eid AND c3.child = t.tid
AND t.value = ‘Abiteboul’)

9

Node/edge-based: descendent-or-self

//book//title
Requires SQL3 recursion
WITH ReachableFromBook(id) AS
((SELECT eid FROM Element WHERE tag = ‘book’)
UNION ALL
(SELECT c.child
FROM ReachableFromBook r, ElementChild c
WHERE r.eid = c.eid))

SELECT eid
FROM Element
WHERE eid IN (SELECT * FROM ReachableFromBook)
AND tag = ‘title’;

10

Interval-based: schema

Element(left, right, level, tag)
left is the start position of the element

right is the end position of the element

level is the nesting depth of the element (strictly speaking, unnecessary)

Key is left

Attribute(left, attrName, attrValue)
Text(left, level, value)

Where did ElementChild go?
E1 is the parent of E2 iff:

[E1.left, E1.right] ⊃ [E2.left, E2.right], and
E1.level = E2.level – 1

11

Interval-based: example
1<bibliography>

2<book ISBN=”ISBN-10” price=”80.00”>
3<title>4Foundations of Databases</title>5
6<author>7Abiteboul</author>8
9<author>10Hull</author>11
12<author>13Vianu</author>14
15<publisher>16Addison Wesley</publisher>17
18<year>191995</year>20

</book>21…
</bibliography>999

bibliography

book

title author author author publisher year

1,999,1

2,21,2

3,5,3 6,8,3 9,11,3 12,14,3 15,17,3 18,20,3

12

Interval-based: queries

//section/title
SELECT e2.left
FROM Element e1, Element e2
WHERE e1.tag = ‘section’ AND e2.tag = ‘title’
AND e1.left < e2.left AND e2.right < e1.right
AND e1.level = e2.level-1;

Path expression becomes “containment” joins!
• Number of joins is proportional to path expression length

//book//title
SELECT e2.left
FROM Element e1, Element e2
WHERE e1.tag = ‘book’ AND e2.tag = ‘section’
AND e1.left < e2.left AND e2.right < e1.right;

No recursion!



3

13

How about XQuery?

DeHaan et al. SIGMOD 2003

Evaluating an XQuery expression results in a sequence of 
environments

An environment E maps each query variable v to its value: a forest 
of XML trees (a node-set) fv

Encode using tables with “dynamic intervals”
Table I: increasing sequence of integers, one per environment

For each query variable v, create a table Tv(s(tring), l(eft), r(ight))
representing the value of v in all environments

• Sorted on l to support efficient processing

• Different environments form non-overlapping regions

14

Example Tv

15

Translating /
Given Tv for values of v, compute v/name

Compute v/*
CREATE VIEW T1 AS
SELECT * FROM Tv t
WHERE EXISTS(SELECT * FROM Tv WHERE l<t.l AND t.r<r);

Compute name roots of v/*
CREATE VIEW T2 AS
SELECT * FROM T1 t
WHERE s = ‘name’
AND NOT EXISTS(SELECT * FROM T1 WHERE l<t.l AND t.r<r);

Compute v/name
CREATE VIEW T3 AS
SELECT * FROM Tv t
WHERE EXISTS(SELECT * FROM T2 WHERE l<=t.l AND t.r<=r);

16

Translating //

Given Tv for values of v, compute v//*
How about:
CREATE VIEW T1 AS
SELECT t2.* FROM Tv t1, Tv t2
WHERE t1.l<=t2.l AND t2.r<=t2.l;

• Almost there, but environments overlap now

Fix: let w = max{t.r | t ∈ Tv}
CREATE VIEW T1 AS
SELECT t2.s, t1.l*w + t2.l, t1.l*w + t2.r
FROM Tv t1, Tv t2
WHERE t1.l<=t2.l AND t2.r<=t2.l;

What would this do to the size of Tv?

17

Translating for
18

Summary of interval-based mapping

Path expression steps become containment joins

No recursion needed for descendent-or-self

Comprehensive XQuery-SQL translation is possible 
with dynamic interval encoding

Looks hairy, but with some special tweaks to the 
relational engine, it actually performs better than many 
of the currently available native XQuery products!

Set-oriented processing helps!



4

19

A path-based mapping

Label-path encoding

Element(pathid, left, right, value), Path(pathid, path)
path is a label path starting from the root

Why are left and right still needed?

pathid left right …
1 1 999 …
2 2 21 …
3 3 5 …
4 6 8 …
4 9 11 …
4 12 14 …
… … … …

Element
pathid path
1 /bibliography
2 /bibliography/book
3 /bibliography/book/title
4 /bibliography/book/author
… …

Path

To preserve structure

20

Label-path encoding: queries

Simple path expressions with no conditions
//book//title

Perform string matching on Path

Join qualified pathid’s with Element

Path expression with attached conditions need to be broken 
down, processed separately, and joined back
//book[publisher=‘Prentice Hall’]/title

Evaluate //book
Evaluate //book/title
Evaluate //book/publisher[text()=‘Prentice Hall’]
Join to ensure title and publisher belong to the same book

21

Another path-based mapping

Dewey-order encoding

Each component of the id represents the order of the 
child within its parent

Unlike label-path, this encoding is “lossless”

bibliography

book

title author author author publisher year

1

1.1

1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6

22

Dewey-order encoding: queries

Examples:
//title
//section/title
//book//title
//book[publisher=‘Prentice Hall’]/title

Works similarly as interval-based mapping

Serves a different purpose from label-path encoding

Any advantage over interval-based mapping?

23

Schema-aware mapping

Idea: use DTD to design a better schema

Basic approach: elements of the same type go into one table
Tag name → table name

Attributes → columns
• If one exists, ID attribute → key column; otherwise, need to “invent” a key

• IDREF attribute → foreign key column 

Children of the element → foreign key columns
• Ordering of columns encodes ordering of children

<!DOCTYPE bibliography […
<!ELEMENT book (title, …)>
<!ATTLIST book ISBN ID #REQUIRED>
<!ATTLIST book price CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>…

]>

book(ISBN, price, title_id, …)

title(id, PCDATA_id)

PCDATA(id, value)

24

Handling * and + in DTD

What if an element can have any number of children?

Example: Book can have multiple authors
book(ISBN, price, title_id, author_id, publisher_id, year_id)?

BCNF?

Idea: create another table to track such relationships
book(ISBN, price, title_id, publisher_id, year_id)

book_author(ISBN, author_id)

BCNF decomposition in action!

A further optimization: merge book_author into author

Need to add position information if ordering is important
book_author(ISBN, author_pos, author_id)



5

25

Inlining

An author element just has a PCDATA child

Instead of using foreign keys
book_author(ISBN, author_id)
author(id, PCDATA_id)

PCDATA(id, value)

Why not just “inline” the string value inside book?
book_author(ISBN, author_PCDATA_value)
PCDATA table no longer stores author values

26

More general inlining

As long as we know the structure of an element and its 
number of children (and recursively for all children), we can 
inline this element where it appears
<book ISBN=“…”>…
<publisher>
<name>…</name><address>…</address>

</publisher>…
</book>

With no inlining at all
book(ISBN, publisher_id)
publisher(id, name_id, address_id)
name(id, PCDATA_id)
address(id, PCDATA_id)

With inlining
book(ISBN,

publisher_name_PCDATA_value,
publisher_address_PCDATA_value)

27

Queries
book(ISBN, price, title, publisher, year),
book_author(ISBN, author), book_section(ISBN, section_id),
section(id, title, text), section_section(id, section_pos, section_id)
//title

(SELECT title FROM book) UNION ALL
(SELECT title FROM section);

//section/title
SELECT title FROM section;

//bibliography/book[author=“Abiteboul”]/@price
SELECT price FROM book, book_author
WHERE book.ISBN = book_author.ISBN AND author = ‘Abiteboul’; 

//book//title
(SELECT title FROM book) UNION ALL
(SELECT title FROM section)

These queries only work
for the given DTD

28

Pros and cons of inlining

Not always applicable
* and +, recursive schema (e.g., section)

Fewer joins

More “scattering” (e.g., there is no longer any table 
containing all titles; author information is scattered 
across book, section, etc.)

Heuristic: do not inline elements that can be shared

29

Result restructuring
Simple results are fine

Each tuple returned by SQL gets converted to an element

Simple grouping is fine (e.g., books with multiple authors)
Tuples can be returned by SQL in sorted order; adjacent tuples are 
grouped into an element

Complex results are problematic (e.g., books with multiple 
authors and multiple references)

One SQL query can only return a single table, whose columns 
cannot store sets
Option 1: return one table with all combinations of authors and 
references → bad
Option 2: return two tables, one with authors and the other with
references → join is done as post processing

30

Comparison of approaches

Schema-oblivious
Flexible and adaptable; no DTD needed

Queries are easy to formulate
• Translation from Xpath/XQuery can be easily automated

Queries involve lots of join and are expensive

Schema-aware
Less flexible and adaptable

Need to know DTD to design the relational schema

Query formulation requires knowing DTD and schema

Queries are more efficient

XQuery is tougher to formulate because of result restructuring


