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Query Optimization
Part II

CPS 216

Advanced Database Systems
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Announcements (April 13)

Homework #4 due in 7 days (Tuesday, April 20)

Final exam on Monday, April 26
3 hours—no time pressure!

Open book, open notes

Comprehensive, but with emphasis on the second half of 
the course and materials exercised in homework

Project demo period: Tues./Wed. after the final
A sign-up sheet will be available this Thursday

Final report due before the demo
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Review of the bigger picture

Query optimization

Consider a space of possible plans (Last Thursday)
Rewrite logical plan to combine “blocks” as much as 
possible

Each block will then be optimized separately

Fewer blocks → larger plan space

Estimate costs of plans in the search space (today)

Search through the space for the “best” plan 
(Thursday)
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Cost estimation

We have: cost estimation for each operator
Example: SORT(CID) takes 2 × B(input)

• But what is B(input)?

We need: size of intermediate results

PROJECT (title)

MERGE-JOIN (CID)

SCAN (Course)SORT (CID)

MERGE-JOIN (SID)

SCAN (Enroll)

SORT (SID)

SCAN (Student)

FILTER (name = “Bart”)

Physical plan example:

Input to SORT(CID):
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Simple statistics

Suppose DBMS collects the following statistics for 
each table R

Size of R: |R|

For each column A in R, the number of distinct A values: 
|πA R|

Assumption: R.A values are uniformly distributed over 
πA R (i.e., all values have the same count in R)

Statistics are often re-computed periodically; 
accurate statistics are not required for estimation
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Selections with equality predicates

Q: σA = v R

Additional assumption: v does appear in R
|Q| ≈ d |R| ⁄ |πA R| e

1 ⁄ |πA R| is the selectivity factor of predicate (A = v)

This predicate reduces the size of input table by the 
selectivity factor
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Conjunctive predicates

Q: σA = u and B = v R

Additional assumption: (A = u) and (B = v) are 
independent

Example:

Counterexample:

|Q| ≈ d |R| ⁄ (|πA R| · |πB R|) e
Reduce the input size by all selectivity factors
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Negated and disjunctive predicates

Q: σA ≠ v R
|Q| ≈ d |R| · (1 – 1 ⁄ |πA R|) e

• Selectivity factor of ¬ p is (1 – selectivity factor of p)

Q: σA = u or B = v R
|Q| ≈ d |R| · (1 ⁄ |πA R| + 1 ⁄ |πB R|) e?

|Q| ≈ d |R| · (1 – (1 – 1 ⁄ |πA R|) · (1 – 1 ⁄ |πB R|)) e
• Intuition: (A = u) or (B = v) is equivalent to
¬ ( ¬ (A = u) and ¬ (B = v))
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Range predicates

Q: σA > v R
Not enough information!

Just pick, say, |Q| ≈ d |R| · 1 ⁄ 3 e
With more information

Largest R.A value: high(R.A)
Smallest R.A value: low(R.A)
|Q| ≈ d |R| · (high(R.A) – v) ⁄ (high(R.A) – low(R.A)) e
In practice: sometimes the second highest and lowest are 
used instead

• The highest and the lowest are often used by inexperienced 
database designer to represent invalid values!
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Two-way equi-join

Q: R(A, B) S(B, C)

Additional assumption: containment of value sets
Every row in the “smaller” table (one with fewer distinct 
values for the join column) joins with some row in the 
other table

That is, if |πB R| · |πB S| then πB R ⊆ πB S

Certainly not true in general

|Q| ≈ d |R| · |S| ⁄ max(|πB R|, |πB S|) e
Selectivity factor of R.B = S.B is
1 ⁄ max(|πB R|, |πB S|)
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Multi-table equi-join

Q: R(A, B) S(B, C) T(C, D)

What is the number of distinct C values in the join 
of R and S?

Additional assumption: preservation of value sets
A non-join attribute does not lose values from its set of 
possible values

That is, if A is in R but not S, then πA (R S) = πA R

Certainly not true in general

12

Multi-table equi-join (cont’d)

Q: R(A, B) S(B, C) T(C, D)

Start with the product of relation sizes 
|R| · |S| · |T|

Reduce the total size by the selectivity factor of each 
join predicate
R.B = S.B: 1 ⁄ max(|πB R|, |πB S|)

S.C = T.C: 1 ⁄ max(|πC S|, |πC T|)

|Q| ≈ d (|R| · |S| · |T|) ⁄
(max(|πB R|, |πB S|) · max(|πC S|, |πC T|)) e
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Recap: cost estimation with simple stats

Using similar ideas, we can estimate the size of projection, 
duplicate elimination, union, difference, aggregation (with 
grouping)

Lots of assumptions and very rough estimation
Accurate estimate is not needed

Maybe okay if we overestimate or underestimate consistently

May lead to very nasty optimizer “hints”
SELECT * FROM Student WHERE GPA > 3.9;
SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;

Next: better estimation using more information 
(histograms)
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Histograms

Motivation
|R|, |πA R|, high(R.A), low(R.A)

• Too little information

Actual distribution of R.A: (v1, f1), (v2, f2), …, (vn, fn)
• fi is frequency of vi, or the number of times vi appears as R.A
• Too much information

Anything in between?
Partition the domain of R.A into buckets
Store a small summary of the distribution within each 
bucket
Number of buckets is the “knob” that controls the 
resolution
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Equi-width histogram

Divide the domain into B buckets of equal width

Store the bucket boundaries and the sum of 
frequencies of the values within each bucket
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Construction and maintenance

Construction
If high(R.A) and low(R.A) are known, use one pass over R to 
construct an accurate equi-width histogram

• Keep a running count for each bucket

If scanning is unacceptable, use sampling
• Construct a histogram on Rsample, and scale frequencies by |R| ⁄ |Rsample|

Maintenance
Incremental maintenance: for each update on R, 
increment/decrement the corresponding bucket frequencies

Periodical recomputation: because distribution changes slowly
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Using an equi-width histogram
Q: σA = 5 R

5 is in bucket [5, 8] (with 19 rows)
Assume uniform distribution within the bucket
|Q| ≈ 19 ⁄ 4 ≈ 5 (|Q| = 1, actually)

Q: σA ≥ 7 and A · 16 R
[7, 16] covers [9, 12] (27) and [13, 16] (13)
[7, 16] partially covers [5, 8] (19)
|Q| ≈ 19 ⁄ 2 + 27 + 13 ≈ 50 (|Q| = 52, actually)

Q: R(A, B) S(B, C)
Consider only joining buckets in histograms for R.B and S.B
Rows in other buckets do not join
Within the joining buckets, use simple rules
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Equi-height histogram

Divide the domain into B buckets with roughly the same 
number of rows in each bucket
Store this number and the bucket boundaries
Intuition: high frequencies are more important than low 
frequencies
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Construction and maintenance

Construction

Sampling also works

Maintenance
Incremental maintenance

• Merge adjacent buckets with small counts

• Split any bucket with a large count
– Select the median value to split

– Need a sample of the values within this bucket to work well

Periodic recomputation also works
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Using an equi-height histogram

Q: σA = 5 R
5 is in bucket [1, 7] (16)

Assume uniform distribution within the bucket

| Q | ≈ 16 ⁄ 7 ≈ 2 (|Q| = 1, actually)

Q: σA ≥ 7 and A · 16 R
[7, 16] covers [8, 9], [10, 11], [12, 16] (all with 16)

[7, 16] partially covers [1, 7] (16)

| Q | ≈ 16 ⁄ 7 + 16 + 16 + 16 ≈ 50
(|Q| = 52, actually)

Join similar to equi-width histogram
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Histogram tricks

Store the number of distinct values in each bucket
To remove the effects of the values with 0 frequency

• These values tend to cause underestimation

Assume uniform spread (the difference between this value and the 
next value with non-zero frequency)

Compressed histogram
Store (vi, fi) pairs explicitly if fi is high

For other values, use an equi-width or equi-height histogram

Self-tuning
Analyze feedback from query execution engine to refine 
histograms

Aboulnaga and Chaudhuri, SIGMOD 1999
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More histograms

More in Poosala et al., SIGMOD 1996

V-optimal(V, F) histogram
Avoid putting very different frequencies into the same bucket

Partition in a way to minimize ∑i VARi overall, where VARi is the 
frequency variance within bucket i

MaxDiff(V, A) histogram
Define area to be the product of the frequency of a value and its 
spread

Insert bucket boundaries where two adjacent areas differ by large 
amounts

A bit easier to construct than V-optimal; comparable performance
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Wavelets

Mathematical tool for hierarchical decomposition of 
functions and signals

Haar wavelets: recursive pair-wise averaging and 
differencing at different resolutions

Simplest wavelet basis, easy to implement

Resolution Averages Detail coefficients
3 [2, 2, 0, 2, 3, 5, 4, 4]
2 [2,    1,     4,     4] [0, –1, –1, 0]
1 [1.5,           4] [0.5, 0]
0 [2.75] [–1.25]

Haar wavelet decomposition: [2.75, –1.25, 0.5, 0, 0, –1, –1, 0]
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Haar wavelet coefficients

Hierarchical decomposition structure
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Wavelet-based histogram

Idea: use a compact subset of wavelet coefficients to 
approximate the data distribution

Matias et al., SIGMOD 1998
Transform the distribution function which maps vi to fi

Steps
Compute cumulative data distribution function C(v)

•C(v) is the number of tuples with R.A · v

Compute wavelet transform of C
Coefficient thresholding: keep only the coefficients that 
are largest in absolute normalized value

• For Haar wavelets, divide coefficients at resolution j by 2 (j ⁄ 2)

26

Using a wavelet-based histogram

Q: σA > u and A · v R

|Q| = C(v) – C(u)

Search the tree to reconstruct C(v) and C(u)
Worst case: two paths, O(log N), where N is the size of 
the domain

If we just store B coefficients, it becomes O(B), but 
answers are now approximate

What about Q: σA = v R?
Same as σA > predecessor(v)  and A · v R
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Summary of histograms

Wavelet-based histograms are shown to work better 
than traditional bucket-based histograms

The trick of using cumulative distribution for range 
query estimation also works for bucket-based 
histograms

Trade-off: better accuracy ↔ bigger size, and higher 
construction and maintenance costs


