Query Optimization Part II

CPS 216 Advanced Database Systems

Announcements (April 13)

- ❖ Homework #4 due in 7 days (Tuesday, April 20)
- * Final exam on Monday, April 26
 - 3 hours—no time pressure!
 - Open book, open notes
 - Comprehensive, but with emphasis on the second half of the course and materials exercised in homework
- * Project demo period: Tues./Wed. after the final
 - A sign-up sheet will be available this Thursday
 - Final report due before the demo

Review of the bigger picture

Query optimization

- Consider a space of possible plans (Last Thursday)
 - Rewrite logical plan to combine "blocks" as much as possible
 - Each block will then be optimized separately
 - Fewer blocks → larger plan space
- ❖ Estimate costs of plans in the search space (today)
- Search through the space for the "best" plan (Thursday)

Cost estimation

Physical plan example:

PROJECT (title)

I

MERGE-JOIN (CID)

.....

MERGE-JOIN (CID)
SORT (CID) SCAN (Course)

D):

Input to SORT(CID):

MERGE-JOIN (SID)

FILTER (name = "Bart") SORT (SID)

1 SCAN (Student) SCAN (Enroll)

- ❖ We have: cost estimation for each operator
 - Example: SORT(CID) takes $2 \times B(input)$
 - But what is B(input)?
- * We need: size of intermediate results

Simple statistics

- Suppose DBMS collects the following statistics for each table R
 - Size of *R*: |*R*|
 - For each column A in R, the number of distinct A values: $|\pi_A R|$
 - Assumption: R.A values are uniformly distributed over π₄ R (i.e., all values have the same count in R)
- Statistics are often re-computed periodically;
 accurate statistics are not required for estimation

Selections with equality predicates

- $Q: \sigma_{A=v} R$
- * Additional assumption: ν does appear in R
- $\bullet |Q| \approx \lceil |R|/|\pi_A R| \rceil$
 - $1/|\pi_A R|$ is the selectivity factor of predicate (A = v)
 - This predicate reduces the size of input table by the selectivity factor

Conjunctive predicates

- $Q: \sigma_{A = u \text{ and } B = v} R$
- * Additional assumption: (A = u) and (B = v) are independent
 - Example: age and gender
 - Counterexample: major and advisor
- $|Q| \approx [|R|/(|\pi_A R| \cdot |\pi_B R|)]$
 - Reduce the input size by all selectivity factors

Negated and disjunctive predicates

- $Q: \sigma_{A \neq v} R$
 - $|Q| \approx \lceil |R| \cdot (1 1/|\pi_A R|) \rceil$
 - Selectivity factor of $\neg p$ is (1 selectivity factor of p)
- Q: $\sigma_{A = u \text{ or } B = v} R$
 - $|Q| \approx \lceil |R| \cdot (1/|\pi_A R| + 1/|\pi_B R|) \rceil$?
 - No! Rows satisfying (A = u) and (B = v) are counted twice
 - $|Q| \approx \lceil |R| \cdot (1 (1 1/|\pi_A R|) \cdot (1 1/|\pi_B R|)) \rceil$
 - Intuition: (A = u) or (B = v) is equivalent to $\neg (\neg (A = u) \text{ and } \neg (B = v))$

Range predicates

- $Q: \sigma_{A > v} R$
- * Not enough information!
 - Just pick, say, $|Q| \approx \lceil |R| \cdot 1/3 \rceil$
- * With more information
 - Largest R.A value: high(R.A)
 - Smallest R.A value: low(R.A)
 - $|Q| \approx |R| \cdot (\operatorname{high}(R.A) v) / (\operatorname{high}(R.A) \operatorname{low}(R.A))|$
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

- $Q: R(A, B) \bowtie S(B, C)$
- * Additional assumption: containment of value sets
 - Every row in the "smaller" table (one with fewer distinct values for the join column) joins with some row in the other table
 - That is, if $|\pi_B R| \leq |\pi_B S|$ then $\pi_B R \subseteq \pi_B S$
 - Certainly not true in general
- $\bullet |Q| \approx \lceil |R| \cdot |S| / \max(|\pi_R R|, |\pi_R S|) \rceil$
 - Selectivity factor of R.B = S.B is $1/\max(|\pi_B R|, |\pi_B S|)$

Multi-table equi-join

- $\diamond Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- ❖ What is the number of distinct *C* values in the join of *R* and *S*?
- ❖ Additional assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if A is in R but not S, then $\pi_A(R \bowtie S) = \pi_A R$
 - Certainly not true in general

Multi-table equi-join (cont'd)

- \bullet $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- * Start with the product of relation sizes
 - $\blacksquare |R| \cdot |S| \cdot |T|$
- Reduce the total size by the selectivity factor of each join predicate
 - $R.B = S.B: 1/\max(|\pi_B R|, |\pi_B S|)$
 - $S.C = T.C: 1/\max(|\pi_C S|, |\pi_C T|)$
 - $|Q| \approx \lceil (|R| \cdot |S| \cdot |T|) / (\max(|\pi_R R|, |\pi_R S|) \cdot \max(|\pi_C S|, |\pi_C T|)) \rceil$

10

Recap: cost estimation with simple stats

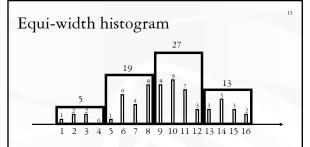
- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- * Lots of assumptions and very rough estimation
 - · Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer "hints"
 SELECT * FROM Student WHERE GPA > 3.9;
 SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- Next: better estimation using more information (histograms)

Histograms

- * Motivation
 - $\blacksquare |R|, |\pi_A R|, \text{high}(R.A), \text{low}(R.A)$
 - Too little information
 - Actual distribution of R.A: $(v_1, f_1), (v_2, f_2), \dots, (v_n, f_n)$
 - f_i is frequency of v_i , or the number of times v_i appears as R.A
 - Too much information

❖ Anything in between?

- Partition the domain of *R.A* into buckets
- Store a small summary of the distribution within each bucket
- Number of buckets is the "knob" that controls the resolution



- * Divide the domain into B buckets of equal width
- Store the bucket boundaries and the sum of frequencies of the values within each bucket

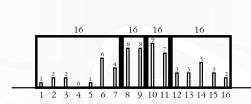
Construction and maintenance

- Construction
 - If high(*R*.*A*) and low(*R*.*A*) are known, use one pass over *R* to construct an accurate equi-width histogram
 - Keep a running count for each bucket
 - If scanning is unacceptable, use sampling
 - \bullet Construct a histogram on $R_{sample},$ and scale frequencies by $\left|R\right|/\left|R_{sample}\right|$
- ❖ Maintenance
 - Incremental maintenance: for each update on R, increment/decrement the corresponding bucket frequencies
 - · Periodical recomputation: because distribution changes slowly

Using an equi-width histogram

- $Q: \sigma_{A=5} R$
 - 5 is in bucket [5, 8] (with 19 rows)
 - Assume uniform distribution within the bucket
 - $|Q| \approx 19/4 \approx 5$ (|Q| = 1, actually)
- $Q: \sigma_{A \geq 7 \text{ and } A \leq 16} R$
 - [7, 16] covers [9, 12] (27) and [13, 16] (13)
 - [7, 16] partially covers [5, 8] (19)
 - $|Q| \approx 19/2 + 27 + 13 \approx 50$ (|Q| = 52, actually)
- $\diamond Q: R(A, B) \bowtie S(B, C)$
 - Consider only joining buckets in histograms for R.B and S.B
 - Rows in other buckets do not join
 - Within the joining buckets, use simple rules

Equi-height histogram



- Divide the domain into B buckets with roughly the same number of rows in each bucket
- * Store this number and the bucket boundaries
- Intuition: high frequencies are more important than low frequencies

.6

Construction and maintenance

- ❖ Construction
 - Sort all R.A values, and then take equally spaced splits
 - Example: 1 2 2 3 4 7 8 9 10 10 10 10 11 11 12 12 14 16 ...
 - Sampling also works
- ❖ Maintenance
 - Incremental maintenance
 - · Merge adjacent buckets with small counts
 - Split any bucket with a large count
 - Select the median value to split
 - Need a sample of the values within this bucket to work well
 - Periodic recomputation also works

Using an equi-height histogram

- $Q: \sigma_{A=5} R$
 - 5 is in bucket [1, 7] (16)
 - Assume uniform distribution within the bucket
 - $|Q| \approx 16/7 \approx 2$
- (|Q| = 1, actually)
- $Q: \sigma_{A \geq 7 \text{ and } A \leq 16} R$
 - [7, 16] covers [8, 9], [10, 11], [12, 16] (all with 16)
 - [7, 16] partially covers [1, 7] (16)
 - $|Q| \approx 16/7 + 16 + 16 + 16 \approx 50$

(|Q| = 52, actually)

❖ Join similar to equi-width histogram

Histogram tricks

- Store the number of distinct values in each bucket
 - To remove the effects of the values with 0 frequency
 - · These values tend to cause underestimation
 - Assume uniform spread (the difference between this value and the next value with non-zero frequency)
- Compressed histogram
 - Store (v_i, f_i) pairs explicitly if f_i is high
 - · For other values, use an equi-width or equi-height histogram
- Self-tuning
 - Analyze feedback from query execution engine to refine histograms
 - Aboulnaga and Chaudhuri, SIGMOD 1999

More histograms

- ☞ More in Poosala et al., SIGMOD 1996
- ❖ V-optimal(V, F) histogram
 - · Avoid putting very different frequencies into the same bucket
 - \blacksquare Partition in a way to minimize $\sum_i VAR_i$ overall, where VAR_i is the frequency variance within bucket i
- ❖ MaxDiff(V, A) histogram
 - Define area to be the product of the frequency of a value and its
 - Insert bucket boundaries where two adjacent areas differ by large
 - A bit easier to construct than V-optimal; comparable performance

Wavelets

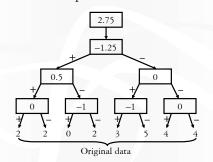
- * Mathematical tool for hierarchical decomposition of functions and signals
- * Haar wavelets: recursive pair-wise averaging and differencing at different resolutions
 - · Simplest wavelet basis, easy to implement

Resolution	Averages	Detail coefficients
3	[2, 2, 0, 2, 3, 5, 4, 4]	
2	[2, 1, 4, 4]	$\{0, -1, -1, 0\}$ $\{0.5, 0\}$
1	[1.5, 4]	[0.5, 0]
0	[2.75]	[-1.25]
Llage mare	lat decomposition, 12.75	1 25 0 5 0 0 1 1

Haar wavelet decomposition: [2.75, -1.25, 0.5, 0, 0, -1, -1, 0]

Haar wavelet coefficients

Hierarchical decomposition structure



Wavelet-based histogram

 Idea: use a compact subset of wavelet coefficients to approximate the data distribution

- Matias et al., SIGMOD 1998
- Transform the distribution function which maps v_i to f_i

Steps

- Compute cumulative data distribution function *C*(*v*)
 - C(v) is the number of tuples with $R.A \le v$
- Compute wavelet transform of *C*
- Coefficient thresholding: keep only the coefficients that are largest in absolute normalized value
 - \bullet For Haar wavelets, divide coefficients at resolution j by $2^{(j/2)}$

25

Using a wavelet-based histogram

 $Q: \sigma_{A > u \text{ and } A \leq v} R$

 $\bullet |Q| = C(v) - C(u)$

* Search the tree to reconstruct C(v) and C(u)

- Worst case: two paths, O(log N), where N is the size of the domain
- If we just store *B* coefficients, it becomes *O*(*B*), but answers are now approximate

• What about $Q: \sigma_{A=v} R$?

■ Same as $\sigma_{A > \text{predecessor}(v)}$ and $A \leq v$ R

Summary of histograms

 Wavelet-based histograms are shown to work better than traditional bucket-based histograms

- The trick of using cumulative distribution for range query estimation also works for bucket-based histograms
- ❖ Trade-off: better accuracy ↔ bigger size, and higher construction and maintenance costs