
1

Student Presentation:
Multi-Query Processing for XML

CPS 216

Advanced Database Systems

2

Announcements (April 20)
Homework #3 has been graded

Grades posted on Blackboard; sample solution available today

Homework #4 due today
Final exam on Monday, April 26

Open book, open notes; 3 hours—no time pressure!
Comprehensive, but with emphasis on the second half of the
course and materials exercised in homework
Final review this Thursday
A sample final will be available on Thursday

Project demo period: Tues./Wed. after the final
Final report due before the demo
Your schedule will be confirmed by this Thursday

3

Multi-query processing for XML

Swapna: introduction and Y-Filter (shared path
processing)

Diao & Franklin. “Path Sharing and Predicate Evaluation
for High-Performance XML Filtering.” TODS, 2003

Brian: IndexFilter (shared path processing using an
interval-based index)

Bruno et al. “Navigation- vs. Index-Based XML Multi-
Query Processing.” ICDE, 2003

Hao: shared XQuery processing
Diao & Franklin. “Query Processing for High-Volume
XML Message Brokering.” VLDB, 2003

1

XML Filtering
• In distributed computing services (Web Services,

data and application integration etc.), XML is the
way data to be exchanged should be encoded.

• In XML filtering system, continuously arriving
streams of XML documents are parsed through a
filtering engine.

• Documents are matched to query specifications
and delivered.

• Queries are specified in XPath, which specifies
constraints over structure (path expressions) and
content (value-based predicates)

The challenge is to efficiently and quickly match incoming
XML documents against the potentially huge set of queries.

XML Filtering

XML
Documents

Filter
Engine

User Profiles

Users

Filtered
Data

YFilter: shared Path Matching
Yanlei Daio Et Al., ACM TODS, Dec. 2003

• Earlier project, XFilter, used event-based parsing and
Finite State Machines (FSMs)

• A separate FSM is created for each path expression
• Redundant work done – commonality among path expressions

not exploited.

• For large-scale systems, shared processing is essential
• YFilter uses a Non-deterministic Finite Automation

(NFA) based approach to share path matching work
among queries

YFilter continued…
• Combines all queries into a single machine
• Merges common prefixes of paths

• Common paths processed only once

• Query specifications written in XPath
• Query path expressions expressed as sequence of

location steps.

• Location step consists of
• Axis – ‘/’ and “//”
• Node test – element name and wildcard operator ‘*’
• Predicates

Representing XPath Queries in
YFilter

a

{Q1}

b

Q1 = /a/b
Q2 = /a/c
Q3 = /a/b/c
Q4 = /a//b/c
Q5 = /a/*/c
Q6 = /a//c
Q7 = /a/*/*/c
Q8 = /a/b/c

a
{Q2}

c

c {Q3}

ε

{Q4}
c

b*

*
c {Q5}

c {Q6}

* c
{Q7}

{Q3, Q8}

NFA Fragments for Location Steps

• NFA fragments are directed graphs
• ε-transition moving to a state with self-loop

Location steps

/a

//a

/*

//*

NFA fragments

a

* aε

*

**ε

2

Constructing a Combined NFA
• Concatenate NFA fragments for location steps in a

path expression
• Traverse combined NFA until

1. NFAp is reached.
2. There is no transition matching the corresponding

transition of the NFAp

Implementing the NFA

• NFA basically uses a Hash table approach
• A data structure is created for each state having

1. ID of the state
2. Type information (accepting state or //-child)
3. Hash table containing transitions from that state
4. For accepting states, an ID list of corresponding

queries
• Transition hash table contains [symbol, stateID]

pairs
• symbol (key) – label of outgoing transition
• stateID – child state that the transition leads to

NFA Execution
• The NFA is executed in an event-driven fashion.
• As an arriving document is parsed, events raised

by parser drives the NFA transitions.
• “End of element” event – NFA execution

backtracks to the state it was when “start of
element” was raised.

• Stack mechanism is used to enable backtracking.

NFA Execution

read
<a>

2
1

match Q1

read

3
2
1

match Q3 Q8

read
<c>

5

3 9 7 6
2
1

read
</c>

3 9 7 6
2
1

read

2
1

read

1

initial
1

Runtime
Stack

NFA

An XML fragment <a> <c> </c>

c

c
b

{Q1}

{Q3, Q8}

{Q2} {Q4}

{Q6}

{Q5}
{Q7}

a *

c

c
* c

c

*

ε

b

1

4

3 5

8

6

12

10

2
7

11

13

9

9 7
6 1012

8 11 6

Q5 Q6Q4

Predicate Evaluation
• Intuitive approach – extend NFA by including

additional transitions to states representing
successful evaluation of predicates.
• Results in an explosion of number of states
• Destroys path-sharing feature

• Inline approach – Value based predicates are
processed as soon as elements in path expressions
that predicates address are matched.

• Selection Postponed (SP) approach – waits until
entire path expression is matched, and applies all
value-based predicates for the matched path.

Inline vs SP
• Interesting observation: the delayed predicate

processing of SP outperforms the eager processing
of Inline by a wide margin.

• The main differences between the 2 approaches
1. Inline: performs early predicate evaluation which does not

prune future work
SP: performs structure matching to prune the set of queries
for which predicate evaluation needs to be considered

2. Inline: evaluation of predicates in the same query happens
at different independent states
SP: failure of one predicate in a query stops evaluation of
rest of the predicates immediately

3. Inline: requires bookkeeping, maintenance cost includes
setting the information and undoing it during backtracking

3

Performance Overview
• Sharing provides order-of-magnitude improvements

• In the experiments, even with 100,000 concurrent queries,
filtering was faster than the parser.

• No exponential blow-up of active states in NFA
execution

• Robust under query workloads with “//” and ‘*’
operators

• Efficient for query updates
• Tens of milliseconds for inserting 1000 queries, and

stabilizes at 5 ms after 50,000 queries exist in the system.

• For value-based predicates, SP approach performs
better than Inline approach

Bibliography

[1] Franklin, M.J., Diao, Y. High-Performance XML
Filtering: An Overview of YFilter

[2] Franklin, M. XML + Query Processing: A Foundation for
Intelligent Networks. Available at
http://www.cs.berkeley.edu/~franklin/Talks/XSym03.ppt

[3] Diao, Y., Altinel, M., Franklin, M. J., Zhang, H., Fischer,
P. Path Sharing and predicate evaluation for high-
performance XML filtering. Available at
http://www.cs.berkeley.edu/~diaoyl/publications/yfilter-
tods-2003-acm.pdf

1

Navigation vs. Index-
Based XML Multi-
Query Processing
By : Brian Cook

Overview

Problem : Multiple path queries need to be
run against a stream XML documents
Typical approach is to step through each
tag one at a time to find a match
Can indexing the XML documents speed
up query processing?

Depends on the situation

Prefix Sharing
When processing several queries at the same
time there may be some paths in common
Reduces space needed to represent input
queries

Y-Filter - Modification

Y-Filter didn’t generate
actual results of matches
Modified the algorithm by
adding one stack per
node in the prefix tree

The stack keeps track of all
matches from the root to
the given node
Each element is a pair :

<node from XML doc,
pointer to position in the
parent stack>

Index Filter - Overview

Basic Idea – Index the document to avoid
processing certain tags that cannot be part
of any query.

Requires that a pre-computed index is
available on the xml document or one
needs to be created on the fly.

Indexing Documents

Each XML tag has the following information
associated with it (L : R , D)

L : Left – number of words from the beginning of the
document until the start of the tag.
R : Right – number of words from the beginning until
the end of the tag.
D : Depth – nesting depth of an element

Create a B-tree for efficient lookup of these
index nodes

2

Indexing Documents cont.

Calculating ancestor / descendant relationships
very easy

Node1 is an ancestor of Node2 if :
L1 < L2 and R1 > R2

Node1 is a parent of Node2 if :
L1 < L2 and R1 > R2 and D1 + 1 = D2

Node1 is an descendant of Node2 if :
L1 > L2 and R1 < R2

Node1 is an child of Node2 if :
L1 > L2 and R1 > R2 and D1 – 1 = D2

Example Indexed XML Doc
The author node (6:13, 3) is a descendant of the
book node (1:150, 1)

Lbook = 1 < 6 = Lauthor and Rbook = 150 > 13 = Rauthor

PathStack

PathStack is a CPU and I/O optimal
algorithm with these limitations :

Complete input has been read in
Can only process one query at a time

Compared to Index-Filter by executing
each query separately then aggregating
the results.

Data structures used in Index-Filter
Associate each node (q)
in the prefix tree :

An index stream Tq-
indexed positions of
document nodes that
match q, sorted by their
left values
A Stack – same as
discussed earlier
A Priority Queue – access
to child of the node having
smallest left value in its
index stream

Stack Priority Queue

Index Stream

Index-Filter

Process the earliest child interval first (in
document order)

Pick from the priority queue

Pruning ancestors :
Skip until the node can be
an ancestor (Figure A)
Pop all nodes on the stack
that cannot be ancestors
(Figure B)

Figure A

Figure B

Index-Filter

Pruning descendents:
Skip until the node can be
a descendant (Figure C)

Output when (Figure D) :
Tmin cannot have any
more ancestors
Tmin is accepting (end of
a match)

Next

Figure C

Figure D

3

Results : Overview
Index-Filter is 3-5 times better than PathStack for large
number of queries (>1000)

Index-Filter (pre-computed index) is better than Y-Filter
when the number of queries is small (<500) or the
document size is large

On the contrary, Y-Filter outperforms Index-Filter for
small documents and large number of queries

Index-Filter (index on the fly) about the same as Y-Filter
for most queries.

Results : Index-Filter vs. PathStack
Small number of queries there is no difference between
the two
Index-Filter is 3 to 5 times more efficient for large
number of queries,
Why? Index-Filter uses the prefix tree to avoid
processing the same portion of similar queries.

Index Filter vs. Y-Filter

Index-Filter (pre-
processed index) better :

When number of input
queries are small (<500)
Document size is large
Why? Index-Filter only
goes through a small part
of the input document,
since it only processes the
indexes whose tags are
present in the input query.

Index Filter vs. Y-Filter
Y-Filter better :

When number of input
queries are large
(previous slide)
When the document
size is small
Why? Y-Filter’s hash
tables scale better than
priority queues in Index-
Filter.

Index Filter vs. Y-Filter
Index-Filter (on the fly index) :

About the same performance as Y-Filter when
processing the index on the fly.

Conclusions

“While most XML query processing techniques
work off of SAX events, in some cases it pays off
to parse the input document in advance and
augment it with auxiliary information that can be
used to evaluate the queries faster.”

However, if the index is not pre-processed then
and needs to be created on the fly, the Index-
Filter and Y-Filter are about the same.

1

1

Yanlei Diao Michael Franklin (UC, Berkeley)

Presenter: Hao He
Revised slides stolen from author’s homepage

Query Processing for
High-Volume XML

Message Brokering

2

XML Message Broker

Data Source

Data Source

Data Source

XML
streams

user
queries

query
results

• XML message brokers: Central exchange points for messages sent
between applications/users.

• User subscriptions: Specification of user interests, written in an XML
query language.

• XML streams: Continuously arriving XML data items. The message
broker matches data items to queries, transforms them, and routes the results.

Message
Broker

3

• Leverage prior work on shared path matching
(i.e.,YFilter)

How, and to what extent can a shared path matching
engine be exploited?

Efficient Transformation

• Goal: customized result generation for tens of
thousands of queries!

• Build customization functionality on top of it
What post-processing of path matching output is needed?
How can this be done most efficiently?

4

Message Broker Architecture

Query
Processor

message
listener

XML messages

queries

qu
er

y
lis

te
ne

r

SAX
XML
parser

node-
labeled

tree

XQuery
parser

parsed
queries

results in an inter-
mediate format

message
sender

message
factory

customized
XML messages

runtime

query
compi-

ler

path-tuple
streams

shared path
matching engine

post-processing
module

5

Query Specification

A query is a FLWR expression enclosed by a constant tag.

binding path

predicate
paths

return
paths

<sections>
{

for $s in $doc//section
where $s/title = “XML”

and $s/figure/title = “XML processing”
return <section>

{ $s//section//title }
{ $s//figure }

</section>
}

</sections>
6

2 31

PathTuple Streams

A PathTuple stream for each matched path expression:

<section>
<section>

<figure> …
</figure>

</section>
<figure> …
</figure>

</section>

//section//figure /section/section/figureNode labeled tree

2

1

3

4

section

section

figure

figure

• PathTuple: A unique path match, one field per location step.

• Ordering: PathTuples in a stream are always output in increasing order
of node ids in the last field.

parsing
events

• Path oriented shredding: query processing = operations on tuple streams.

2 3
1 4

1 3

YFilter

parsing events

2

7

<sections>
{

for $s in $doc//section
where $s/title = “XML”

and $s/figure/title = “XML processing”
return <section>

{ $s//section//title }
{ $s//figure }

</section>
}
</sections>

Output of Query Processor

GroupSequence-ListSequence format for all the nodes
selected from the input message.

section_2:
{title_6, title_8},
{figure_5, figure_9}

section_11:
{title_14},
{figure_15, figure_16}

8

Basic Approaches

• Three query processing approaches exploiting shared
path matching.

Post-process path tuple streams to generate results.
Plans consist of relation-style/tree-search based operators.
Differ in the extent they push work down to the path engine.

• Tension between shared path matching and result
customization!

PathTuples in a stream are returned in a single, fixed order for
all queries containing the path.
They can be used differently in post-processing of the queries.

9

for $s in $doc//section
where $s/title = “XML”

and $s/figure/title = “XML processing”
return <section>

{ $s//section//title }
{ $s//figure }

</section>

Alternative 1: PathSharing-F

Insert part of the binding path from
the for clauses into the path engine.

An external plan for each query:

Query i

DupElim

Where-Filter

Return-Select

shared path matching engine

//section

σ

• Selection: value-based comparisons in the binding path (//section[@id <= 2]).

• DupElim: when same node is bound multiple times in the stream.
• Where-Filter: tests predicate paths in the where clause (tree-search routine).
• Return-Select: applies the return clause (tree-search routine).

2
4
7

11
13
…

//section

10

Duplicate Elimination

<figures>
{ for $f in

$doc//section[@id<=2]//figure
where …
return …

}
</figures>

• Duplicates for the binding path: PathTuples
containing the same node id in the last field.

YFilter

//section//figure
1 3
2 3

1
section

2
section

3
figure

id = 1

id = 2

• Cause redundant work in later operators
and a duplicate result.
• DupElim ensures that the same node is
emitted only once.

Return-Select

Where-Filter

id <=2σ

1 3
2 3

DupElim

1 3

11

for $s in $doc//section
where $s/title = “XML”

and $s/figure/title = “XML processing”
return <section>

{ $s//section//title }
{ $s//figure }

</section>

Alternative 2: PathSharing-FW

In addition: push predicate paths from
the where clause into the path engine.

Semijoins: find query matches after paths in
the for and the where clause are matched.

shared path matching engine

Query i Return-Select//section
//section/title
//section/figure/title

DupElim

σ

2
4
7

11
13
…

//section //section/title

3
8

12
…

2
7

11
…

2
7

11
…

>
//section/figure/title

2
7

11
…

//section

5
9
16
…

4
2

11
…

6
10
17
…

2
11
…

>

>
>

σ σ

12

Alternative 3: PathSharing-FWR

Query i

shared path matching engine

Also push return paths from the
return clause into the path engine.

OuterJoin-Select: generate results.

Duplicates for a return path:
• Defined on the join field and the last field of the return path stream.
• Need DupElim on return paths before outer joins.

order preserving

• create a group for each binding
path tuple in the leftmost input. DupElim

σ σ σ

>
>

DupElimDupElim

• order preserving
• hash vs merge based

OuterJoin-
Select

stream s for
return paths

• left outer join the binding path tuple
with a return stream to create a list.

3

13

Optimizations

• Observation: More path sharing more
sophisticated processing plans.

• Tension between shared path streams and result
customization.

Different notions of duplicates for binding/return paths.
Different stream orders for the inputs of join operators.

Optimizations based on query / DTD inspection:
Removing unnecessary DupElim operators;
Turning hash-based operators to merge/scan-based ones.

14

Performance Comparison

• Three alternatives w./w.o. optimizations, non-recursive data

0

200

400

600

800

1000

NoOp t Op t(q) Op t(q +d td)

Optimizations applied

M
Q

PT
 (m

s)

P a t hS ha r ing-F

P a t hS ha r ing-FW

P a t hS ha r ing-FWR

Summary of the results:
• PathSharing-FWR when combined with optimizations based on queries and DTD

usually provides the best performance.
It performs rather poorly without optimizations.

• Effectiveness of optimizations:
Query inspection improves the performance of all alternatives;
Addition of DTD-based optimizations improves them further.
Recursive data challenges the effectiveness of optimizations.

15

Shared Post-processing

So far, a separate post-processing plan per query.
• The best performing approach (PathSharing-FWR) only uses

relational style operators.
• Sharing techniques similar to shared Continuous Query

processing, but highly tailored for XML message brokering.
Query rewriting
Shared group by for outer joins
Selection pullup over semijoins (NiagaraCQ)
Shared selection (TriggerMan, NiagaraCQ, TelegraphCQ)

• Shared post-processing can provide great improvement in
scalability!

16

Conclusions

Result customization for a large set of queries:
• Sharing is key to high-performance.
• Can exploit existing path sharing technology, but

need to resolve the inherent tension between path
sharing and result customization.

• Results show that aggressive path sharing performs
best when using optimizations.

• Relational style operators in post-processing enable
use of techniques from the literature (multi-query
optimization, CQ processing).

