
1

End-Semester Logistics & Review

CPS 216

Advanced Database Systems

2

Announcements (April 23)

Homework #4 will be graded by Saturday
Sample solution available today

Verify the accuracy of your scores in Blackboard and 
let me know of any problem before the final

Homework assignments, midterm, reviews, presentation

3

Announcements (cont’d)

Final exam next Monday (April 26)
2-5pm, in this room (D243 LSRC)
Comprehensive (everything up to today’s lecture, with 
emphasis on the second half of the course, and materials 
exercised in homework assignments)
Open book, open notes; no time pressure
Sample final and solution available today (note the 
difference materials covered in last year’s CPS216)

Project demos Tues./Wed. after the final
Email confirmation of schedule will be sent later today
Remember that report is due before the demo

4

Pre-midterm: basics

Relational model/algebra → physical data 
independence

Really made query optimization flourish

SQL: NULL and three-value logic, bag versus set 
semantics, subqueries, grouping and aggregation →
nifty features, mess for optimizers

Recall query rewrite tricks for preserving duplicate, 
avoiding the count bug, and magic decorrelation

Use query rewrite to get back to the simplicity of 
relational algebra

5

Pre-midterm: basics (cont’d)

More SQL
Views → logical data independence

• Materialized views → reintroduce redundancy to improve 
performance

Did not cover lots of interesting work on selecting views to 
materialize, rewriting and optimizing queries using 
materialized views, and maintaining materialized views

Constraints → the more you know the better you can do
• Did not cover semantic query optimization

Triggers (ECA) → “active” data
• Did not cover scalable trigger processing (related to multi-

query processing for continuous queries)

6

Pre-midterm: physical data organization

Storage hierarchy (DC vs. Pluto)
→ Count I/O’s

→ Get as much useful info as possible with each long trip

→ Do other things while waiting

Disk performance → sequential beats random

Data layout
Record layout (handling variable-length fields, NULL’s)

Block layout (NSM, DSM, PAX)
→ Inter-/intra-record locality



2

7

Pre-midterm: physical data organization (cont’d)

Access paths
Primary versus secondary indexes

Tree-based indexes: ISAM, B+, B, R, R*, R+, GiST

Hash-based indexes: extensible, linear

Text indexes: inverted lists, signature files (and bit-sliced 
ones), suffix array, trie, suffix tree, Patricia trie, Pat tree

Variant indexes: value-list/bitmap, projection, bit-sliced 
indexes, join indexes

→ Reintroduce redundancy to improve performance

→ Fundamental trade-off: query versus update cost

8

Pre-midterm: query processing

Scan-based algorithms

Sort- and hash-based algorithms (and their duality)

Index-based algorithms

Pipelined execution with iterators
Blocking and non-blocking operators

Buffer management
Per-query, per-table policy is ideal

→ The more you know the better you can do

9

Review: XML basics

Data model: well-formed vs. valid (DTD ≈ schema)

Query languages
XPath: (branching) path expressions (with conditions)

XQuery: FLWR, subqueries in return (restructuring), 
quantified expressions, aggregation, sorting

XSLT: structural recursion with templates

Programming: SAX (one pass) vs. DOM (in 
memory)

10

Review: representing XML

Flat files and CLOB do not really exploit the structure of 
XML

Schema-oblivious approaches
Node/edge representation

Interval-based representation (left, right, level)

Path-based representation (labeled path, Dewey order)

Sequence-based representation (ViST)

Schema-aware approach
Inlining choice for +, *, and shared elements in DTD

Less flexible and harder to reformulate queries, but queries are
more efficient → the more you know the better you can do

11

Review: processing XML
Finite state machines (Niagra, YFilter)
Node/edge representation

Naturally leads to navigational processing
Path expression steps → equality joins

• Top-down, bottom-up, hybrid, … correspond to different join orders

Interval-based representation
Naturally leads to structural join processing
Path expression steps → containment joins (great for anc/desc)

• Join ordering?

Stacks are your best friend; remember XML intervals don’t overlap

A mixed-mode approach may be best
Everything comes down to joins!

Less of an issue because it can be processed
as a multi-way join on the same attribute

12

Review: indexing XML
Basic indexes: inverted lists for tag names, value indexes, 
back pointers to parents, etc.
Index for interval-based representation

Example: XR-tree (B+-tree augmented with stab lists at internal 
nodes) for finding ancestors

Index for path-based representation
Example: IndexFabric (based on Patricia trie)

Index for sequence-based representation
Example: ViST

• Path expression → (non-contiguous) subsequence matching
• Use a trie to store sequences, encoded using intervals to support skipping

Structural summary indexes for graphs
Examples: DataGuide (DFA) and 1-index (NFA)

Still plenty of room for improvement



3

13

Review: query optimization or “goodification”?

Heuristics: push selections down; smaller joins first
→ Reduce the size of intermediate results

Cost-based
Query rewrite

• Apply relational algebra equivalences to SPJ blocks

• Merge blocks to get a bigger search space

Cost estimation
• Boils down to estimating the size of intermediate results
• Use statistics (e.g., histograms) → fundamental trade-off: cost versus 

accuracy

Search
• Dynamic programming (+ interesting orders), randomized search, genetic 

programming, etc.


