
1

SQL: Recursion

2

A motivating example

Example: find Bart’s ancestors

“Ancestor” has a recursive definition
X is Y’s ancestor if

•X is Y’s parent, or

•X is Z’s ancestor and Z is Y’s ancestor

parent child
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

Parent (parent, child)

Bart Lisa

MargeHomer

Abe

Ape

3

Recursion in SQL

SQL2 had no recursion
You can find Bart’s parents, grandparents, great 
grandparents, etc.

SELECT p1.parent AS grandparent
FROM Parent p1, Parent p2
WHERE p1.child = p2.parent
AND p2.child = ’Bart’;

But you cannot find all his ancestors with a single query

SQL3 introduces recursion
WITH clause

Implemented in DB2 (called common table expressions)

4

Ancestor query in SQL3

WITH Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

SELECT anc
FROM Ancestor
WHERE desc = ’Bart’;

Query using the relation
defined in WITH clause

Define a
a relation
recursively

basis

induction

How do we compute such a recursive query?

5

Fixed point of a function

If f: T→ T is a function from a type T to itself, a 
fixed point of f is a value x such that f(x) = x
Example: What is the fixed point of f(x) = x / 2?

0, because f(0) = 0 / 2 = 0

To compute a fixed point of f
Start with a “seed”: x← x0

Compute f(x)
• If f(x) = x, stop; x is fixed point of f
• Otherwise, x← f(x); repeat

Example: compute the fixed point of f(x) = x / 2
With seed 1: 1, 1/2, 1/4, 1/8, 1/16, … → 0

6

Fixed point of a query

A query q is just a function that maps an input table 
to an output table, so a fixed point of q is a table T
such that q(T) = T

To compute fixed point of q
Start with an empty table: T← ∅
Evaluate q over T

• If the result is identical to T, stop; T is a fixed point

• Otherwise, let T be the new result; repeat

Starting from ∅ produces the unique minimal fixed 
point (assuming q is monotone)



2

7

Finding ancestors
WITH Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

Think of it as Ancestor = q(Ancestor)

parent child
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

Parent (parent, child)

anc desc anc desc
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

anc desc
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe
Abe Bart
Abe Lisa
Ape Homer

anc desc
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe
Abe Bart
Abe Lisa
Ape Homer
Ape Bart
Ape Lisa

8

Intuition behind fixed-point iteration

Initially, we know nothing about ancestor-
descendent relationships

In the first step, we deduce that parents and 
children form ancestor-descendent relationships

In each subsequent steps, we use the facts deduced 
in previous steps to get more ancestor-descendent 
relationships

We stop when no new facts can be proven

9

Mutual recursion example

Table Natural (n) contains 1, 2, …, 100
Which numbers are even/odd?

An odd number plus 1 is an even number
An even number plus 1 is an odd number
1 is an odd number

WITH Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),

Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

10

Operational semantics of WITH
WITH R1 AS Q1, …,

Rn AS Qn
Q;

Q1, …, Qn may refer to R1, …, Rn
Operational semantics
1. R1 ← ∅, …, Rn← ∅
2. Evaluate Q1, …, Qn using the current contents of R1, …, Rn:
R1

new ← Q1, …, Rnnew ← Qn
3. If Rinew ≠ Ri for any i

3.1. R1 ← R1
new, …, Rn← Rnnew

3.2. Go to 2.
4. Compute Q using the current contents of R1, …, Rn and output 

the result

11

Computing mutual recursion
WITH Even(n) AS

(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),

Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

Even = ∅, Odd = ∅
Even = ∅, Odd = {1}

Even = {2}, Odd = {1}
Even = {2}, Odd = {1, 3}
Even = {2, 4}, Odd = {1, 3}
Even = {2, 4}, Odd = {1, 3, 5}
…

12

Fixed points are not unique
WITH Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

parent child
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe

Parent (parent, child)

There may be many other fixed points

But if q is monotone, then all these fixed 
points must contain the fixed point we 
computed from fixed-point iteration 
starting with ∅

Thus the unique minimal fixed point is the 
“natural” answer to the query

Note that the bogus tuple
reinforces itself!

anc desc
Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe
Abe Bart
Abe Lisa
Ape Homer
Ape Bart
Ape Lisa
bogus bogus



3

13

Mixing negation with recursion

If q is non-monotone
The fixed-point iteration may flip-flop and never converge

There could be multiple minimal fixed points—so which one is the 
right answer?

Example: reward students with GPA higher than 3.9
Those not on the Dean’s List should get a scholarship

Those without scholarships should be on the Dean’s List

WITH Scholarship(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM DeansList)),

DeansList(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM Scholarship))

14

Fixed-point iteration does not converge
WITH Scholarship(SID) AS

(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM DeansList)),

DeansList(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM Scholarship))

SID name age GPA
857 Lisa 8 4.3
999 Jessica 10 4.2

Student

SID
857
999

SID
857
999

Scholarship DeansList
SID

Scholarship DeansList
SID

15

Multiple minimal fixed points
WITH Scholarship(SID) AS

(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM DeansList)),

DeansList(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM Scholarship))

SID name age GPA
857 Lisa 8 4.3
999 Jessica 10 4.2

Student

SID
999

SID
857

Scholarship DeansList
SID
857

SID
999

Scholarship DeansList

16

Legal mix of negation and recursion

Construct a dependency graph
One node for each table defined in WITH
A directed edge R→ S if R is defined in terms of S

Label the directed edge “–” if the query defining R is not 
monotone with respect to S

Legal SQL3 recursion: no cycle containing a “–” edge
Called stratified negation

Bad mix: a cycle with at least one edge labeled “–”

Ancestor

Legal!

Scholarship DeansList

–

– Illegal!

17

Stratified negation example

Find pairs of persons with no common ancestors
WITH Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent) UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)),

Person(person) AS
((SELECT parent FROM Parent) UNION
(SELECT child FROM Parent)),

NoCommonAnc(person1, person2) AS
((SELECT p1.person, p2.person
FROM Person p1, Person p2
WHERE p1.person <> p2.person)

EXCEPT
(SELECT a1.desc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.anc = a2.anc))

SELECT * FROM NoCommonAnc;

Ancestor

Person

NoCommonAnc

–

18

Evaluating stratified negation

The stratum of a node R is the maximum number of “–” 
edges on any path from R in the dependency graph

Ancestor: stratum 0

Person: stratum 0

NoCommonAnc: stratum 1

Evaluation strategy
Compute tables lowest-stratum first

For each stratum, use fixed-point iteration on all nodes in that 
stratum

• Stratum 0: Ancestor and Person
• Stratum 1: NoCommonAnc

Intuitively, there is no negation within each stratum

Ancestor

Person

NoCommonAnc

–



4

19

Summary

SQL3 WITH recursive queries

Solution to a recursive query (with no negation): 
unique minimal fixed point

Computing unique minimal fixed point: fixed-point 
iteration starting from ∅
Mixing negation and recursion is tricky

Illegal mix: fixed-point iteration may not converge; there 
may be multiple minimal fixed points

Legal mix: stratified negation (compute by fixed-point 
iteration stratum by stratum)


