Today’s Topics

Technology for Computers
A Technology Driven Field

Upcoming
Computer Architecture (Chapter 8)

Reading
(not in text)

What is Needed to Compute?

- Primitive Arithmetic Aids
 - Stones
 - Abacus
 - Hash Marks, Writing
- Multiplication/Division
 - Slide Rule
 - Uses properties of logarithms
 - Mechanical and Electromechanical Calculators
 - Use wheels, gears, etc.
 - Multiplication is repeated adding
 - Division is repeated subtracting
- Want More:
 - Programmable!

The Basic Technology

- What do we need?
 - Logic
 - NOT function
 - AND function
 - OR function
 - Memory
- All computer functions can be constructed from these
- Simplest device to allow this implementation is the Relay

Older Technology: Relay

- Relay: An electrically controlled switch

Switch (double-throw)
Older Technology: Relays

- Relays: How they work
 - Electromagnet moves switch
 - Switch can be quite complicated
- Problems with Relay Computers
 - Speed
 - Power consumption
 - Reliability
 - Size
 - Weight
 - Noise

Older Technology: Vacuum Tube

- Vacuum Tube: an electronically controlled switch

Older Technology: Vacuum Tubes

- Vacuum Tubes: How they work
 - Filament (heater) causes electrons to boil off cathode
 - Allows current to flow to plate (anode)
 - Grid (screen) voltage can repel electrons: control flow
 - Essentially voltage amplifiers
- Present Day Use of Vacuum Tubes
 - Televisions (cheaper, heavier)
 - Computer Monitors (being replaced by LCD)
 - Very High Power Applications
 - Radio stations
- Advantage of Tubes
 - Much-much faster than relays
- Problems with Vacuum Tube Computers
 - Power consumption (filament always on)
 - Size
 - Weight
 - Reliability
 - Noise (cooling)
 - Speed (~1/size) -- slow by modern standards
Technology: Transistors

- Transistors
 - Two basic kinds (also N & P polarities)
 - Junction
 - Field Effect
 - Junction Transistors/Bipolar Transistors
 - Historically first
 - Current amplifiers
 - Close to relays
 - Current always flowing!
 - Still use much power

- Field Effect Transistor (FET):
 - Electronically controlled switch

Modern Technology: MOS FETs

- Metal Oxide Semiconductor Field Effect Transistors
- How do they work
 - Voltage on gate controls flow from source to drain
 - Similarity to vacuum tube: Voltage Driven
 - For computer use: on/off
 - Almost no current (CMOS)
- Complementary (N type & P type) is current tech
 - Called CMOS
 - Use of single transistors is not current
 - One big step remains: integration

Modern Technology: MOS FETs

- Advantages of using (singly) MOS FETs
 - Low power use
 - Fast
 - Small (but not tiny)
 - As fast as tubes
- Disadvantages
 - Need very many for modern computing
 - Space (distance)
 - Distance takes time: on slow side
 - The interconnection problem
Modern Technology: Integrated Circuits

- What is missing?
 - Need way to mass produce
 - Need to get many transistors on a single chip

- Integrated Circuits -- VLSI
 - Multiple Transistors on a Chip
 - Use photo-lithography to "print" wires and transistors
 - SSI, MSI, LSI, VLSI
 - Now get millions of transistors on 1/4 inch square chip

- Economics of Silicon (Micro-electronics)
 - Tremendous cost to produce one chip
 - If it works, extra copies almost free
 - Do simulations of everything to get it right the first time
 - Plant to produce memory chips costs $ billions

Comparing Technologies

- CPUs in Everything
 - Use programmed general purpose chips in place of special purpose chips
 - Programs in ROM (read-only memory)

- Technology Summary

<table>
<thead>
<tr>
<th>Measure:</th>
<th>speed</th>
<th>Power / heat</th>
<th>weight</th>
<th>Reliability (MTF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>technology</td>
<td>(ops/s)</td>
<td>(mW/bit)</td>
<td>(kg/cpu)</td>
<td>(hours)</td>
</tr>
<tr>
<td>Relay</td>
<td>10^2</td>
<td>10^5</td>
<td>10^5</td>
<td>1</td>
</tr>
<tr>
<td>Vacuum tube</td>
<td>10^3</td>
<td>10^5</td>
<td>10^4</td>
<td>10</td>
</tr>
<tr>
<td>Transistor</td>
<td>10^6</td>
<td>10^3</td>
<td>10^5</td>
<td>10^4</td>
</tr>
<tr>
<td>Early IC</td>
<td>10^7</td>
<td>1</td>
<td>10</td>
<td>10^4</td>
</tr>
<tr>
<td>Current IC</td>
<td>10^9</td>
<td>10^{-3}</td>
<td>1</td>
<td>10^8</td>
</tr>
</tbody>
</table>

Note: Assume computer equivalent to low cost PC in power
Note: All values are very rough estimates

Limitations of Technology

- Some Fundamental (Physical) Limitations
 - Speed of light (distance)
 - Heat dissipations (temperature)
 - Capacitance and inductance (time delays)
 - DC losses (Ohm's Law)
 - AC losses (radiation)

- Important Practical Concerns
 - Noise
 - Lifetime (mean time to failure)
 - Space, weight (volume)
 - Power needs
 - Comes down to Economics !!! (cost)

Other Computing Technologies

- Other Fascinating Technology Trails
 - Displays
 - CRT
 - LCD
 - Plasma
 - Printing
 - Impact
 - Laser
 - Ink-jet
 - Storage
 - Tapes
 - Disks
 - Laser read/write (CDRoms, DVDs)
 - CPU in EVERYTHING / VOLUME is EVERYTHING