On the Limits of Computing

- **Noncomputability**
 - Certain Problems *Not* Amenable to Computer Solution
 - Examples given here may seem strained and artificial.

- **However, computers have very real limitations**

- **Will Use Two Approaches to *Prove* Noncomputability**
 1. Show *Existence* of Noncomputable Functions
 2. Prove That Certain Programs *Can Not Exist*

Existence of Noncomputable Functions

- **Approach**
 - Matching up Programs and Functions
 - E.g., assume 3 functions, only 2 programs
 - Without details, conclude one function has no program

- **Have: Uncountable Infinity of Functions Mapping int to int**
 - How can we show that is true?
 - Functions can be seen as columns in tables
 - Put all functions into a huge (*infinite*) table
 - Show that even that cannot hold them all
 - *Can you identify the functions in the following table?*

```
Table of All Integer to Integer Functions
1  1  2  6  0  0  8  2  1  4
2  4  4  7  0  1  8  4  1  7
3  9  6  8  0  0  8  6  2  10
4 16  8  9  1  1  8 16  3 13
5 25 10 10  1  0  8 10  5 16
6 36 12 11  1  1  8 36  8 19
7 49 14 12  1  0  8 14 13 22
8 64 16 13  1  1  8 64 21 25
9 81 18 14  1  0  8 18 34 28
.  .  .  .  .  .  .  .  .  .
```
A Function NOT in this (inclusive!) Table

<table>
<thead>
<tr>
<th>1+1</th>
<th>1</th>
<th>2</th>
<th>6</th>
<th>0</th>
<th>0</th>
<th>8</th>
<th>2</th>
<th>1</th>
<th>4</th>
<th>. .</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4+1</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>. .</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6+1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>. .</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>8</td>
<td>9+1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>16</td>
<td>3</td>
<td>13</td>
<td>. .</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>1+1</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>16</td>
<td>. .</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>1+1</td>
<td>8</td>
<td>36</td>
<td>8</td>
<td>19</td>
<td>. .</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>14</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>114</td>
<td>13</td>
<td>22</td>
<td>. .</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>16</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>64+121</td>
<td>25</td>
<td>. .</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>18</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>34+128</td>
<td>. .</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>20</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>100</td>
<td>55</td>
<td>31+1</td>
<td>. .</td>
</tr>
</tbody>
</table>

Existence of Noncomputable Functions

- All Programs Can be Ordered (Thus Countable)
 - By size, shortest program first
 - Just use alphabetical order
- Try to Draw Lines Between Functions and Programs
 - Could draw lines from every program to every function
 - But, have proved functions uncountable...
 - Thus, There Must be Functions With NO Programs!
- Hard to come up with function that computer can't produce
 - Possible example: random generator
 - (No algorithm can produce truly random number sequence)
 - Use Table
 - Program must be of finite size; Requires infinite table

Noncomputable Programs

- Programs that Read Programs
 - What programs have we used that read in programs?
 - Express programs as a single string (formatting messed up)
 - Therefore, could write program to see if there is an if statement in the program: answers YES or NO
 - How about, Does program halt?
 - Lack of while (and functions) guarantees a halt
 - Not very sophisticated
 - Not Halting for All Inputs is usually considered a Bug
- Solving the Halting Problem
 - Write specific code to check out more complicated cases
 - Gets more and more involved...

The Halting Problem: Does it Halt?

- Consider Following Program: Does it halt for all input?
  ```
  // input an integer value for k
  while (k > 1)
  {
    if ((k/2) * 2 == k)  // is k even?
      k = k / 2;
    else
      k = 3 * k + 1;
  }
  ```
- Try It!
 - e.g. input 17: value of k: 52 26 13, 40 20 10 5, 16 8 4 2 1
 - For a long time, no one knew whether this quit for all inputs.
Proving Noncomputability

- Mathematicians have proven that no one, finite program can check this property for all possible programs
- Examples of non-computable problems
 - Equivalence: Define by same input > same output
 - Use variation of above program; not sure it ends
 - Cannot generally prove equivalence
- Use Proof by Contradiction (Indirect Proof)
- Proving non-computability
 - Sketch of proof
 - Find more details in book

Noncomputability Proof

- Assume Existence of Function halt:
 - String halt(String p, String x);
 - Inputs: p = program, x = input data
 - Returns: "Halts" or "Does not halt"
- Can now write:
 - String selfhalt(String p);
 - Inputs: p = program
 - Returns: "Halts on self" or "Does not halt on self"
 - Uses: halt(p, p);
 - i.e.: asking if halts when program p uses itself as data

Noncomputability Proof.2

- Now write function contrary:
 void contrary();
 {
 TextField program = new TextField(1000);
 String p, answer;
 p = program.getText();
 answer = selfhalt(p);
 if (answer.equals("Halts on self"))
 {
 while (true) // infinite loop
 answer = "x";
 }
 else
 return; // i.e., halts
 }
- "Feed it" this program as data.

Noncomputability Proof.3

- Paradox!
 - If the halt program decides it halts, it goes into infinite loop and goes on forever
 - If the halt program decides it doesn't halt, it quits immediately
- Therefore halt cannot exist!
- Whole classes of programs on program behavior are non-computable
 - Equivalence
 - Many other programs that deal with the behavior of a program
Living with Noncomputability

- What Does It All Mean?
 - Not necessarily a very tough constraint unless you get too greedy.
 - Programs can't do everything.
 - Beware of people who say they can!
 - Programs probably can't do things we don't know how to do...