Today’s topics

Java Applications
 Simulation

Upcoming
 Software Engineering (Chapter 7)

Reading
 Great Ideas, Chapters 6
What does it mean to be human?

- **Tool User?**
 - Some animals use tools

- **Speech?**
 - Some animals (whales?) seem to communicate by sound

- **Do simulations?**
 - ? ? ?

- **Many things we do could be called simulations**
 - Drawing a diagram of something to build
 - Using a map to give directions
 - Moveable furniture cutouts on a floor plan
Computer Simulation

- As suggested before, can simulate without computer
- Computer greatly extends the domain
 - Nowadays almost everything built is simulated first
- What are some of the things made possible by computer simulation?
- Early efforts:
 - Fancy camera lenses among first beneficiaries
 - Efficient paths for space ships
 - Population projections in relation to birth control policies
- Let’s use the computer to find solution to simple problem
Dog Lot Fence

- **Optimize:**
 - i.e., give your dog the biggest lot in the face of constraints
 - Build lot against side of house
 - Fixed length roll of fencing (and posts)
 - Rectangular layout

```
+----+---+----+
|    | x |    |
+----+---+----+
|    |   |    |
+----+---+----+
```

Length of fence is $2x + y$

- Use program to try different values of x and y
 - Better than actually trying many layouts with a posthole digger!!
public class Fence extends java.applet.Applet implements ActionListener {

 TextField mInstruct;
 Label lLength;
 DoubleField gLength;
 Button bSimulate, bDisplay;
 TextArea mResults;
 int k;

 public void init() {
 lLength = new Label("Length");
 mInstruct = new TextField(70);
 mInstruct.setText("Enter length of fence, the press Simulate or Display");
 gLength = new DoubleField(10);
 bSimulate = new Button("Simulate");
 bDisplay = new Button("Display");
 mResults = new TextArea(25,60);
bSimulate.addActionListener(this);
bDisplay.addActionListener(this);
add(mInstruct); add(lLength); add(gLength);
add(bSimulate); add(bDisplay); add(mResults);
}

public void actionPerformed(ActionEvent event) {
 Object cause = event.getSource();
 double fenceLength;
 if (cause == bSimulate) {
 fenceLength = gLength.getDouble();
 fenceTable(fenceLength);
 }
 if (cause == bDisplay) {
 fenceLength = gLength.getDouble();
 fencePlot(fenceLength);
 }
}
void fenceTable(double fenceLength) {
 double area, x, y;
 x = 0.0;
 y = fenceLength - 2.0 * x;
 mResults.setText("Fence Optimization Table\n");

 while (y >= 0.0) {
 area = x * y;
 mResults.append("x = " + x + " y = " + y +
 " area = " + area + "\n");
 x = x + 1.0;
 y = fenceLength - 2.0 * x;
 }
}
void fencePlot(double fenceLength) {
 double area, x, y;
 x = 0.0;
 y = fenceLength - 2.0 * x;
 mResults.setText("Fence Optimization Plot\n");
 while (y >= 0.0) {
 area = x * y;
 mResults.append(x+"\t"+plotString(area)+"\n");
 x = x + 1.0;
 y = fenceLength - 2.0 * x;
 }
}

String plotString(double area) {
 String s = "";
 while (area > 0) { s = s + "*"; area = area - 5.0;}
 return s;
}
Fence Optimization

- Output makes it clear how fence should be arranged
 - Not necessarily intuitive (makes simulation useful)
 - (Can use other tricks -- non computer -- to get answer)
- Note we eyeballed the output to get answer
 - Could have had computer pick the maximum area
 - Could you sketch that program out?
- Let’s use slightly different approach; answer not obvious
 - Fix area
 - Minimize amount of fencing used
 - Change scenario a bit
 - Build into corner
 - Put in a tree!
Fence with Tree

- Program a bit more complicated
 - Will not go over details
 - However, intuitive methods not likely to work
 - Must use program to get right answer
 - Program is on-line
Pitfalls in Automatic Methods

- Optimization problems seem straightforward enough
 - Not always the case
- May involve many variables
 - Exhaustively checking all possible values may take too long
 - Need to *intelligently* look for optimal solution
 - However, can have local maxima or minima
 - Can lead to wrong answer
- Sometimes *optimal Solution is computationally out of reach*
 - Will come back to that theme at end of semester
Simulation in Microelectronics

- Modern microchips too complicated to be built without simulation
 - It takes computers to build computers (recursion?)
- One chip takes tens of thousands of dollars to make
 - Additional ones are almost free
 - One error and it’s useless
- Each much too complex to check by hand
 - Modern chips have millions of transistors
- Every aspect of the process is simulated
 - Logic
 - Layout
 - Circuit characteristics
 - Fabrication Process
Other Popular Simulation Targets

- **Games that are Simulations**
 - SimCity
 - Flight Simulator
 - Often serious simulation tools make interesting games

- **Graphics**
 - Many movies now use computer graphics
 - More and more are entirely graphics
 - Not voices, though!
 - Pioneering: UNC Computer Science Walk-through

- **Virtual Reality**
 - Headsets
 - Caves
Other Popular Simulation Targets

- **Architecture**
 - Models
 - “Walk-through” extensions
 - Design your own kitchen

- **Artificial Aging**
 - Project what missing child would look like now

- **Police Work**
 - Computerized generation of suspect’s face

- **Beauty**
 - Your image with different hairdos, makeup, etc.

- **Your entry here:**__________