Today’s topics

Computer Hardware
- Electric Circuits
- Designing an Adder

Upcoming
- Computer Communications
 (Great Ideas Chapter 10)

Reading
(not in text)
Binary Addition (Z = X + Y)

- Like Decimal, but---
 - Have only two symbols: 0, 1
- At first, seems like two “inputs” will do

 x: 10010
 y: +01001
 z: 11011

- Looking at it
 - From right: 0+1 = 1; 1+0 = 1; 0+0 = 0; 0+1 = 1; 1+0 = 1
 - However, example not realistic
 - Must deal with possible carries
 - Need better example
Binary Addition \((Z = X + Y) \) (+carry)

- Let’s try

 \[
 \begin{array}{c}
 C: & 001100100 \\
 X: & 100110011 \\
 Y: & +000110010 \\
 Z: & 101100101 \\
 \end{array}
 \]

- Must add a top row for carries to get whole picture

- To add two number (by columns) takes *three* inputs

 - X, Y and C (for carry)
 - So, *from right*: 0+0+1 = 1(carry 0); 0+1+1 = 0(carry1);
 1+0+0 = 1(carry 0); 0+1+1 = 0(carry 1); 0+0+0 = 0(carry0);
 0+1+1 = 0(carry 1); 1+1+1 = 1(carry 1); 1+0+0 = 1(carry0);
 0+0+0 = 0 (carry 0); 0+1+0 = 1 (carry 0)
Truth Tables for Addition

- We need two 3-input truth tables
 - One for the resulting Sum bit
 - One for the resulting Carry bit

Sum:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[S = X'Y'C + X'YC' + XY'C' + XYZ \]
Truth Tables for Addition

Carry:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C_in</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The 3 bit Adder

- Now have the building-blocks to put together an Adder of arbitrary size
- Design in several steps (illustrated by drawings on web page)
 1. Block Diagram
 2. Simple Adder
 3. Control Section
 4. Putting it all together: The 3 Bit Adder
- Will be on quizzes and/or Final Exam
- Learn how to go through circuits and mark them
- May encounter different circuits
 - E.g., a Subtracter
 - Same marking methods will apply