Today’s Topics

Computer Science 1
Review

Upcoming
Final Exam: Thursday, 5/5, 2:00pm, B101 LSRC (here)
Review Session: ?

Reading
Great Ideas, Chapter 4 - 15
4. Top-Down Programming, Subroutines, and a Database Application

- Functions using Functions
- Getting Information In and Out of Functions
- Class Data: known within class.
- Formal Parameters/Arguments
- Syntax: Using a Function
- Functions that Return Values
- Syntax: Defining a Function
- Larger Problems: How to Deal with the Complexity
 - Divide and Conquer
 - Design: Stepwise Refinement
 - Top-Down Implementation
4. Top-Down Programming, Subroutines, and a Database Application

- "Parallel" Arrays or "Corresponding" Arrays
 - Model Phone Book Capability
 - Typical Access by Name
 - Access by other Fields (other arrays)

- Extend Idea to Database

- Basic Data Base Functions

- Wild Card Retrieval

- Used Car Database

- Relational Data Bases
4. Top-Down Programming, Subroutines, and a Database Application

- Recursion
 - Factorial (N!)
 - Iterative Approach for Factorial
 - Exponentiation (X^N)

- Church-Markov-Turing Thesis
 - This part of Java lets you solve all kinds of algorithms
5. Graphics, Classes, and Objects

- **Basic Stuff**
 - Canvas class, Graphics class, pixels, Coordinates

- **Graphics Methods**
 - `void drawLine(int x1, int y1, int x2, int y2)`
 - `void drawRect(int x, int y, int width, int height)`
 - `void drawOval(int x, int y, int width, int height)`
 - `void setColor(Color c)`

- **Example: (Using Recursion)** `Serpinsky.java`
5. Graphics, Classes, and Objects

- Writing a Class
 - Header
 - Contents of a class definition
 - The Constructor
 - The **Serp** Class to draw Serpinsky Gasket

- Simple-Minded Animation
 - Draw and Erase
6. Simulation

- Simulation: Motivation
- Optimization, Simulation: Biggest Dog Lot
- How Could We Automate Process?

Other Roles For Simulations
- Economy, Policy (e.g. birth control), Marketing
- Camera Lenses, UNC CS Walkthrough, Virtual Reality

Simulation in Microelectronics
- Logic, Layout, Circuit, Process

Design and Manufacturing
7. Software Engineering

- Engineering a Program - Programming in the Large
- What is Good Software?
- Program Life Cycle, Feedback Cycles
- Understanding Problem / Specifications
- Debugging
- Correctness, Proofs?
- Documentation
- Testing
- Bottom Line: Productivity: 15 LINES OF CODE/DAY
- Many People? The "Committee": Interaction
- Organizational Schemes: e.g. Chief Programmer Team
7. Software Engineering

- Killer Robot Scenario
 - Development Models
 - Waterfall
 - Prototyping
 - Testing
 - User Interface

- Ethics
8. Machine Architecture

- Architecture (definition)
- Hardware / Software
- Basic Computer very primitive
- Architectural Features
 - Memory
 - CPU: AX, IP, IR, CF
- Fetch/Execute Cycles
- Need to handle IF and WHILE situations
- Tracing (often the only way to understand)
- Loop Example: Factorial Example
- Handling Lists or Arrays (Self Modifying Code)
- Fancier Architecture
9. Language Translation

- Importance of language
- **Goal:** *Translate Java To Assembler*
- Revise Syntactic Production Rules (seen before)
- Use Rules to Modify Strings
- Add Semantic ("meaning") Components to our Rules
- Use Syntactic Derivation to Generate Semantic Rules;
 Use Semantic rules to Generate Code
- Rules for Looping
- **Important:** *Everything done by simple substitution*
- Everything "adds up"
Electric Circuits

- Levels of a Computer System
- Circuits: Water Model (the real thing = electrons)
 - battery, generators, heat -> light, motors
- Circuits With Switches (e.g. knife switch)
- Logic/Truth Tables: AND, OR
- Implementing Logic with Switches
- Logical (Boolean) Expression
- Equivalence of:
 - Circuit with Switches, Truth Tables, Boolean Expression
- Arbitrary Truth table for $f(x,y,z)$
Electric Circuits

- Relays
- Storing Information (Memory): Latch
- Binary Numbers
 - Conversion to and from Decimal
- Binary Addition
 - Truth Tables
 - Block Diagram
 - Simple Adder Circuit
 - Decoding/Control
12. Computer Communications

- Computer Communications is one of the Great Ideas
- Modes of Communications
- Like Most of Computing: Layers upon Layers
- Basic Communications: In binary
- Connection Mode
 - Circuit Switched, Message Switched, Packet Switched

TCP/IP

- Ethernet (Bus Example)
- Internet -- a network of LANs that are interconnected
- Packets -- the currency of the Internet
- The Layers
 - The Physical Layer, The IP (Internet Protocol) Layer
 - The TCP Layer, The Application Layer
12. Computer Communications

- Packets within Packets (Encapsulation)
- Reliability
- Addressing (Layers Again!)
 - Hardware Address (Ethernet Address)
 - IP Address
 - Domain Name (address)
- Applications
 - email, news, talk, ftp, telnet, ssh, rlogin
 - information services: WWW, Older: gopher, WAIS
- Client/Server
 - Print Server, File Server, Name Server,
 - WWW
11. Security, Privacy and Wishful Thinking

- Billions in Losses
- Possible Traps in Public Systems
 - Trojan Horse, Onlooker, Digital camera
- Good Passwords and Cracking
 - Briefcase combination lock
 - Analysis of brute force methods
 - Password on a Computer
 - Dictionary Attacks
- Encryption
 - Monoalphabetic Substitution
 - Polyalphabetic Substitution
 - The Vignere Cypher; The Babbit Solution
11. Security, Privacy and Wishful Thinking

- Cypher Reuse: BAD
- One Time Pads: Can be Absolutely Secure
- The Key Exchange Problem
 - Using your "secure" channel (bad)
 - A Padlock Analogy
- Public Key Encryption
 - A Padlock Analogy
 - Rivest, Shamir, and Adleman (RSA) Encryption
 - Using Public Key and Private Key
 - Primes and Factoring
 - Breaking the Code: Factoring
11. Security, Privacy and Wishful Thinking

- **Public Key Encryption**
 - Digital Signatures
 - Using Private Key and Public Key
 - Need for Time Stamps
- **Other Attacks (Buzz Words)**
 - Many Leave No Trace
 - Password Hacking, IP Spoofing, Replay Attack
 - Man in the Middle, Denial of Service
- **Whom Can You Trust?**
 - Viruses, Trapdoors, Trojan Horses, Common Sense
- **The Strong Encryption Trap**
10. Virtual Environments for Computing

- The Raw Machine Provides a Hostile Environment
- Early Years Had Major Theme: CPU Time Precious
- Later Years: Cheaper and Cheaper Hardware

What Does an Operating System Do?
- Processor Management (Multiprogramming)
- I/O Systems
- Memory Management
- Software Environments

Memory Management
- Memory Hierarchies, Paging, Protection
10. Virtual Environments for Computing

- **I/O Systems**
 - Files Systems, Communications/Networking
 - Graphical User Interfaces (GUI)

- **Processor Management**
 - True Parallel Processes vs. Simulated
 - Synchronization
 - Race condition
 - Deadlock
Changing Computer Technology

- Some Fundamental Limitations
 - Speed of light, heat dissipations, capacitance and inductance

- Other Important Concerns
 - Economics !!!, Noise, Lifetime (mtf), Space

- Relay Computers (and problems)

- Vacuum Tube Computers (and problems)

- Transistor

- Integrated Circuits -- VLSI

- Economics of Silicon (Micro-electronics): CPUs in Everything

- Technology Summary (table)
13. Program Execution Time

- On the Limitations of Computer Science
 - 1. too slow. 2. Non-computable. 3. Don't know algorithm

- Time Complexity, N

- Study of a Sorting Algorithm: Selection Sort: N^2

- Polynomial = Tractable
 - Linear Time Algorithms: $t = A \times N$
 - Cubic Time Algorithms: $t = A \times N^3$
 - Quicksort: $t = A \times N \times \log(N)$
 - Binary Search: $t = A \times \log(N)$

- Intractable Algorithms: Exponential $t = A \times B^N$
 - Chess, Traveling Salesperson, Towers of Hanoi

- More hardware not always the answer!
14. Parallel Computation

- Limitation on Processor Speed
 - Speed of Light
 - Manufacturing Problems with Small Sizes
 - Heat Dissipation

- Ultimately Parallelism is Only Hope

- Forms of Parallelism
 - Word Size, Pipe Line (Laundry Example)
 - Multiprocessors, Networks of Processors, Internet

- Speedup

- What can we do with 100 processors?
 - Even with optimal speedup no big help for B^N programs
15. Noncomputability

- Certain Problems Not Amenable to Computer Solution
- Existence of Noncomputable Functions
 - Approach: Matching up Programs and Functions
 - Have: Uncountable Infinity of Functions (cannot be put into a row)
 - All Programs Can be Ordered
 - Try to Draw Lines Between Functions and Programs
 - Many more Functions than Programs!
- Programs that Read Programs
 - E.g., Java Compiler
- Solving the Halting Problem
15. Noncomputability

- Proofs by Contradiction (Indirect Proof)
- Proving non-computability
 - Assume Existence of Function halt:
 - Use in way resulting in Paradox!
 - Therefore halt cannot exist!

- What Does It All Mean?
The Human Genome

- **Genome: makeup: The Double Helix - DNA**
 - 24 Chromosomes, 20-25 thousand Genes
 - 3.5 Gpb (3,500,000,000 base pairs)
 - Bases denoted by letters A, C, G, T
 - Strand of DNA (in each of our cells) approx 6 feet long!

- **Alphabet demo: reconstruct alphabet fragments?**
 - Assume each letter used only once, can match on single character

- **Reconstruction from DNA fragments**
 - More difficult: Only 4 characters: A, C, G, T
 - Repetition in the sequence: Need long overlaps
 - Demo: example with a sequence much longer than alphabet
 - Identify Overlaps to reconstruct; can get original sequence
The Human Genome

- The Real World (not toy alphabet problems)
 - String lengths are huge: \((3 \times 10^9)\)
 - Use fragments because Automatic Sequencers Available
 Limited to lengths of 800 base pairs from each end of strand
 - Now use of the Shotgun Method of Sequencing

- Shotgun Sequencing
 - Randomly cut genome into small pieces (~5 Kbp)
 - Make many identical copies of these pieces
 - Ends sequenced to produce reads

- What’s left is a Data Processing Problem
 - Problems: Gaps, Repeats, Sequencing Errors
 - Effectively “slide” ends over each other for match
 - Compare each read with each other read: \(N^2\) is \(~9 \times 10^{12}\) compares
The Human Genome

❖ **Interesting Competition**
 - BAC to BAC Sequencing
 - Whole Genome Shotgun Sequencing
 - Public Human Genome Project (1988 -)
 - Celera Genomics (private: Craig Ventnor, Eugene Myers)
 - Later start (1998 -), “finished” at same time
 - Whole Genome Shotgun method appears to have won

❖ **Job just beginning!**
 - Need to find out what in Genome affects what in practice
 - Much labeled “junk” DNA because it doesn’t seem to affect anything.