Announcements

• Finish Chapter 6, Sec 2 for next time
• Next assignment handed out after spring break – enjoy your break!
• Pixar Talk – Monday, March 21, 7:30pm
 – Computers Don’t Make Movies
 – LSRC B101
What we will do today

• Lecture on Chap 6, Sec 2 through page 170
 – Execution control with if/else statements and Boolean functions

• Classwork
Thinking about More Advanced Worlds

• How do you build animations like simulations and video games?
• Need to write code that involves decisions
Examples of Decisions

• A car-race simulation – the driver steers the car around curves and past mile markers
 – If the car stays on the road the score increases
 – If the car goes off the road into the stands, the car crashes
 – If the driver gets the car over the finish line, the time is posted and the driver wins!
Logical Expressions

• Decision is made based on current conditions.
• Condition is checked in a logical expression that evaluates to \textit{true} or \textit{false} (Boolean) value.
 – car on road \quad \rightarrow \quad \text{true}
 – car over finish line \quad \rightarrow \quad \text{false}
If/Else

- In Alice, a logical expression is used as the condition in an If/Else control structure.
- Decisions (using If/Else) are used in:
 - Functions
 - Methods
Example: Boolean Functions

• Suppose we build a simulation system used to train flight controllers
• One of the tasks of a flight controller is to be alert for possible collisions in flight space
Storyboard

• Two aircraft – biplane and helicopter
• As the biplane moves towards the helicopter we want to make sure they do not collide
• If they are too close, they need to adjust their altitude (height)
Storyboard (cont)

- Two factors in determining whether two aircraft are in danger of collision
 - Total distance between them
 - Vertical distance between them
- Both functions return true if aircraft are too close, otherwise false
isTooCloseByDistance:

Parameters: aircraft1, aircraft2, minDistance

If distance between aircraft1 and aircraft2 is less than minDistance
 return true
Else
 return false
Using a Relational Operator

- Use the `<` relational operator from the World’s built-in functions to check the distance against the minimum

```
aircraft1 distance to aircraft2 < minDistance
```
Implementing the Function

World.IsTooCloseByDistance (Obj aircraft1, Obj aircraft2, 123 minDistance)

No variables

- If aircraft1 distance to aircraft2 < minDistance
 - Return true

- Else
 - Return false

- Return true
Vertical Distance Function

• To find the difference in altitude, use the built-in distance above function
 – Don’t know which aircraft is above the other
 – To avoid a possible negative value, use absolute value of the distance
istooCloseByVertical
Storyboard

forwardAndCheckCollision

Parameters: \textit{aircraft1, aircraft2, distance}

\textit{aircraft1} move forward \textit{distance}

If \textit{aircraft1} and \textit{aircraft2} are closer than twice \textit{distance}
 avoid collision if they are too close heightwise
 move \textit{aircraft1} forward twice the \textit{distance}
Implementation and Calling Function

World.forwardAndCheckCollision (Obj aircraft1, Obj aircraft2, 123 distance)

No variables

- If World.IsTooCloseByDistance aircraft1 = aircraft1 < aircraft2 = aircraft2 < minDistance = (distance * 2)

- World.checkForHeightCollision aircraft1 = aircraft1 < aircraft2 = aircraft2 < distance = distance

Else

Do Nothing
checkForHeightCollision
Avoid Collision

- If aircraftOne is above aircraftTwo, do:
 - Move aircraftOne up 5 meters
 - Move aircraftTwo down 5 meters

- Else, do:
 - Move aircraftOne down 5 meters
 - Move aircraftTwo up 5 meters
Demo and Testing

• Create several events
 – Move plane backword
 – Move plane forward slowly and check for collisions
 – Try with planes at different heights
Classwork today

• Create