Today’s topics

- Induction
- Reading: Sections 3.3
- Upcoming
 – More Induction

§3.3: Mathematical Induction

- A powerful, rigorous technique for proving that a predicate \(P(n) \) is true for every natural number \(n \), no matter how large.
- Essentially a “domino effect” principle.
- Based on a predicate-logic inference rule:

\[
\begin{align*}
P(0) \\
\forall n \geq 0 \ (P(n) \rightarrow P(n+1)) \\
\therefore \forall n \geq 0 \ P(n)
\end{align*}
\]

“The First Principle of Mathematical Induction”

The “Domino Effect”

- **Premise #1:** Domino #0 falls.
- **Premise #2:** For every \(n \in \mathbb{N} \), if domino \(n \) falls, then so does domino \(n+1 \).
- **Conclusion:** All of the dominoes fall down!

Note: this works even if there are infinitely many dominoes!

Validity of Induction

Proof that \(\forall k \geq 0 \ P(k) \) is a valid consequent:

Given any \(k \geq 0 \), the 2nd antecedent \(\forall n \geq 0 \ (P(n) \rightarrow P(n+1)) \) trivially implies that \(\forall n \geq 0 \ (n<k \rightarrow (P(n) \rightarrow P(n+1))) \), i.e., that \((P(0) \rightarrow P(1)) \land (P(1) \rightarrow P(2)) \land \ldots \land (P(k-1) \rightarrow P(k)) \).

Repeatedly applying the hypothetical syllogism rule to adjacent implications in this list \(k-1 \) times then gives us \(P(0) \rightarrow P(k) \); which together with \(P(0) \) (antecedent #1) and *modus ponens* gives us \(P(k) \). Thus \(\forall k \geq 0 \ P(k) \).
The Well-Ordering Property

- Another way to prove the validity of the inductive inference rule is by using the well-ordering property, which says that:
 - Every non-empty set of non-negative integers has a minimum (smallest) element.
 - $\forall \emptyset \subseteq \mathbb{N} : \exists m \in S : \forall n \in S : m \leq n$

- This implies that $\{ n \mid \neg P(n) \}$ (if non-empty) has a min. element m, but then the assumption that $P(m-1) \rightarrow P((m-1)+1)$ would be contradicted.

Outline of an Inductive Proof

- Let us say we want to prove $\forall n \ P(n)$…
 - Do the base case (or basis step): Prove $P(0)$.
 - Do the inductive step: Prove $\forall n \ P(n) \rightarrow P(n+1)$.
 - E.g. you could use a direct proof, as follows:
 - Let $n \in \mathbb{N}$, assume $P(n)$. (inductive hypothesis)
 - Now, under this assumption, prove $P(n+1)$.
 - The inductive inference rule then gives us $\forall n \ P(n)$.

Generalizing Induction

- Rule can also be used to prove $\forall n \geq c \ P(n)$ for a given constant $c \in \mathbb{Z}$, where maybe $c \neq 0$.
 - In this circumstance, the base case is to prove $P(c)$ rather than $P(0)$, and the inductive step is to prove $\forall n \geq c \ (P(n) \rightarrow P(n+1))$.

- Induction can also be used to prove $\forall n \geq c \ P(a_n)$ for any arbitrary series $\{a_n\}$.

- Can reduce these to the form already shown.

Second Principle of Induction

- Characterized by another inference rule: $P(0)$
 $\forall n \geq 0 : (\forall 0 \leq k \leq n \ P(k)) \rightarrow P(n+1)$
 $\therefore \forall n \geq 0 : P(n)$

- The only difference between this and the 1st principle is that:
 - the inductive step here makes use of the stronger hypothesis that $P(k)$ is true for all smaller numbers $k < n+1$, not just for $k = n$. A.k.a. “Strong Induction”
Induction Example (1st princ.)

- Prove that the sum of the first \(n \) odd positive integers is \(n^2 \). That is, prove:
 \[\forall n \geq 1: \sum_{i=1}^{n} (2i - 1) = n^2 \]
- Proof by induction.

 - Base case: Let \(n = 1 \). The sum of the first 1 odd positive integer is 1 which equals \(1^2 \).

(Cont…)

Example cont.

- Inductive step: Prove \(\forall n \geq 1: P(n) \rightarrow P(n+1) \).

 - Let \(n \geq 1 \), assume \(P(n) \), and prove \(P(n+1) \).
 \[
 \sum_{i=1}^{n+1} (2i - 1) = \left(\sum_{i=1}^{n} (2i - 1) \right) + (2(n + 1) - 1) \\
 = n^2 + 2n + 1 \\
 = (n + 1)^2
 \]

Problem

- Show for all natural numbers \(n \)

 - \((n^3 - n) \) is divisible by 3

Another Induction Example

- Prove that \(\forall n > 0, n < 2^n \). Let \(P(n) = (n < 2^n) \)

 - Base case: \(P(1) = (1 < 2^1) = (1 < 2) = \text{T} \).
 - Inductive step: For \(n > 0 \), prove \(P(n) \rightarrow P(n+1) \).

 - Assuming \(n < 2^n \), prove \(n + 1 < 2^{n+1} \).
 - Note \(n + 1 < 2^n + 1 \) (by inductive hypothesis)
 \[< 2^n + 2^n \text{ (because } 1 < 2, 2^0 < 2, 2^n < 2^{n+1} \) \]
 \[= 2^{n+1} \]
 - So \(n + 1 < 2^{n+1} \), and we’re done.
Example of Second Principle

- Show that every \(n > 1 \) can be written as a product \(\prod p_i = p_1 p_2 \ldots p_s \) of some series of \(s \) prime numbers.
 - Let \(P(n) = \text{"n has that property"} \)
- **Base case**: \(n = 2 \), let \(s = 1, p_1 = 2 \).
- **Inductive step**: Let \(n \geq 2 \). Assume \(\forall 2 \leq k \leq n: P(k) \).
 Consider \(n+1 \). If it’s prime, let \(s = 1, p_1 = n+1 \).
 Else \(n+1 = ab \), where \(1 < a \leq n \) and \(1 < b \leq n \).
 Then \(a = p_1 p_2 \ldots p_r \) and \(b = q_1 q_2 \ldots q_u \). Then we have that \(n+1 = p_1 p_2 \ldots p_r q_1 q_2 \ldots q_u \), a product of \(s = t + u \) primes.

Another 2nd Principle Example

- Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps. \(P(n) = \text{"n can be…"} \)
- **Base case**: \(12 = 3(4), 13 = 2(4) + 1(5), 14 = 1(4) + 2(5), 15 = 3(5) \), so \(\forall 12 \leq n \leq 15, P(n) \).
- **Inductive step**: Let \(n \geq 15 \), assume \(\forall 12 \leq k \leq n P(k) \). Note \(12 \leq n - 3 \leq n \), so \(P(n-3) \), so add a 4-cent stamp to get postage for \(n + 1 \).

The Method of Infinite Descent

- A way to prove that \(P(n) \) is false for all \(n \in \mathbb{N} \).
- Sort of a converse to the principle of induction.
- Prove first that \(\forall P(n): \exists k < n: P(k) \).
 - Basically, “For every \(P \) there is a smaller \(P \).”
- But by the well-ordering property of \(\mathbb{N} \), we know that \(\exists P(m) \rightarrow \exists P(n): \forall P(k): n \leq k \).
 - Basically, “If there is a \(P \), there is a smallest \(P \).”
- Note that these are contradictory unless \(\neg \exists P(m) \),
 - that is, \(\forall m \in \mathbb{N}: \neg P(m) \). There is no \(P \).

Infinite Descent Example

- **Theorem**: \(2^{1/2} \) is irrational.
- **Proof**: Suppose \(2^{1/2} \) is rational, then \(\exists m, n \in \mathbb{Z}^+: 2^{1/2} = m/n \). Let \(M, N \) be the \(m, n \) with the least \(n \).
 \[
 \sqrt{2} = \frac{M}{N} \implies 2 = \frac{M^2}{N^2} \implies 2N^2 = M^2.
 \]
 \[
 \frac{2N - M}{M - N} = \frac{(2N - M)N}{(M - N)N} = \frac{2N^2 - MN}{M^2 - MN} = \frac{M^2 - MN}{(M - N)N} = \frac{M}{N}.
 \]
 \[
 1 < \sqrt{2} < 2 \implies 1 < \frac{M}{N} < 2 \implies N < M < 2N \implies 0 < M - N < N.
 \]
 So \(\exists k < N, j: 2^{1/2} = j/k \) (let \(j = 2N - M, k = M - N \)). \(\blacksquare \)
Problem

- Married couple hosts a party
 - Invites only other married couples
 - At least one person of an invited couple is acquainted to at least
 the host or the hostess
 - Upon arrival at the party, each person shakes hands with all other
 guests he/she doesn’t know
- Hostess mingles and asks everyone including her husband,
 “How many hands did you shake?”
 - To her surprise, all responses are different
- How many hands the the host and hostess each shake?