Today’s topics

• Counting
 – Generalized Pigeonhole Principle
 – Permutations
 – Combinations
 – Binomial Coefficients
 – Writing permutation algorithms

• Reading: Sections 4.2-4.3, 4.4, 4.6

• Upcoming
 – Probability
Generalized Pigeonhole Principle

• If N objects are assigned to k places, then at least one place must be assigned at least $\lceil N/k \rceil$ objects.

• *E.g.*, there are $N=280$ students in this class. There are $k=52$ weeks in the year.
 - Therefore, there must be at least 1 week during which at least $\lceil 280/52 \rceil = \lceil 5.38 \rceil = 6$ students in the class have a birthday.
Proof of G.P.P.

- By contradiction. Suppose every place has $< \lfloor N/k \rfloor$ objects, thus $\leq \lfloor N/k \rfloor - 1$.
- Then the total number of objects is at most
 \[
k \left(\left\lfloor \frac{N}{k} \right\rfloor - 1 \right) < k \left(\left(\frac{N}{k} + 1 \right) - 1 \right) = k \left(\frac{N}{k} \right) = N
 \]
- So, there are less than N objects, which contradicts our assumption of N objects! \qed
G.P.P. Example

- Given: There are 280 students in the class.
 - Without knowing anybody’s birthday, what is the largest value of n for which we can prove using the G.P.P. that at least n students must have been born in the same month?

- Answer:
 \[
 \left\lfloor \frac{280}{12} \right\rfloor = \left\lfloor 23.3 \right\rfloor = 24
 \]
Permutations (§4.3)

• A permutation of a set S of objects is a sequence that contains each object in S exactly once.
 – An ordered arrangement of r distinct elements of S is called an r-permutation of S.

• The number of r-permutations of a set with $n=|S|$ elements is
 \[P(n,r) = n(n-1)\ldots(n-r+1) = n!/(n-r)! \]
Permutation Example

• You are in a silly action movie where there is a bomb, and it is your job to disable it by cutting wires to the trigger device. There are 10 wires to the device. If you cut exactly the right three wires, in exactly the right order, you will disable the bomb, otherwise it will explode! If the wires all look the same, what are your chances of survival?

\[P(10,3) = 10 \cdot 9 \cdot 8 = 720, \]
so there is a 1 in 720 chance that you’ll survive!
Combinations (§4.3)

- An r-combination of elements of a set S is simply a subset $T \subseteq S$ with r members, $|T|=r$.
- The number of r-combinations of a set with $n=|S|$ elements is

$$C(n, r) = \binom{n}{r} = \frac{P(n, r)}{P(r, r)} = \frac{n!/(n-r)!}{r!} = \frac{n!}{r!(n-r)!}$$

- Note that $C(n,r) = C(n, n-r)$
 - Because choosing the r members of T is the same thing as choosing the $n-r$ non-members of T.
Combination Example

• How many distinct 7-card hands can be drawn from a standard 52-card deck?
 – The order of cards in a hand doesn’t matter.

• Answer \(C(52,7) = \frac{P(52,7)}{P(7,7)} \)

 \[
 C(52,7) = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 \cdot 47 \cdot 46}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}
 \]

\[
= \frac{52 \cdot 17 \cdot 10 \cdot 7 \cdot 47 \cdot 46}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}
\]

\[
= 133,784,560
\]
Binomial coefficients

- Binomial coefficient \(\binom{n}{r} \)
 - Given \((1 + x)^r\)
 - What are the coefficients of \(x^r\)?

\[
(1 + x)^n = \sum_{r=0}^{n} \binom{n}{r} x^r = \binom{n}{0} x^0 + \binom{n}{1} x^1 + \cdots + \binom{n}{n} x^n
\]

- Show for \((1 + x)^4\)
Important Theorems on Binomials

• Binomial theorem
 - In the expansion of \((1 + x)^n\), the coefficient of \(x^r\) equals

 \[
 C(n, r) = \binom{n}{r} = \frac{n^r}{r!}
 \]

• Pascal’s Identity

 \[
 \binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}
 \]

• Proofs?
§4.6, Generating Perms. & Combs.

• We will go over algorithms for:
 – Generating the next largest permutation, in lexicographic order.
 – Generating the next largest bit string.
 • Remember, a bit string can represent a combination.
 – Generating the next r-combination in lexicographic order.

• Also we’ll give recursive algorithms for generating permutations, combinations, and r-combinations.
Generating All Permutations

procedure genAllPerms(n>0: integer)
{output all permutations of the integers 1,...,n, in order from smallest to largest}
for i:=1 to n begin used_i = F end
{none of the integers have been used yet}
recursiveGenPerms(i,n)

The recursiveGenPerms procedure is on the next slide…
Recursive Permutation Generator

procedure recursiveGenPerms(i,n)
 if i>n then begin {We’re done, print the answer.}
 for k := 1 to n print perm_k; print newline
 end else
 for j := 1 to n {Consider all poss. next items.}
 if ¬used_j then begin {Choose item j.}
 used_j := T; perm_i := j
 recursiveGenPerms(i+1,n)
 used_j := F {Now back up}
 end

end
Next Permutation in Order

- Given an existing permutation \(a_1, \ldots, a_n\) of \(\{1, \ldots, n\}\), how do we find the next one?
- Outline of procedure:
 - Find largest \(j\) such that \(a_j < a_{j+1}\).
 - Find the smallest integer in \(a_{j+1}, \ldots, a_n\) that is greater than \(a_j\). Put it in position \(j\).
 - Sort the remaining integers in \(a_j, \ldots, a_n\) from smallest to largest. Put them at \(j+1\) through \(n\).
Next-Permutation Procedure

procedure nextPerm(a_1, \ldots, a_n: perm. \{1, \ldots, n\})
 j := n - 1;
 while a_j > a_{j+1} and j > 0 do
 j := j - 1
 if j = 0 then return \{no more permutations\}
 k := n;
 while a_j > a_k do
 k := k - 1
 swap(a_j, a_k);
 r := n;
 s := j + 1
 while r > s do
 begin
 swap(a_r, a_s);
 r := r - 1;
 s := s + 1
 end
Combination Generator

• Suppose we want to generate all combinations of the elements of the set \{1, \ldots, n\}.
 – Or any other set with \(n\) elements.

• A combination is just a subset.
 – And, a subset of \(n\) items can be specified using a bit-string of length \(n\).
 • Each bit says whether the item is in the subset.

• Therefore, we can enumerate all combinations by enumerating all bit-strings of length \(n\).
Recursive Bit-String Enumerator

\begin{enumerate}

\begin{enumerate*}[label=\textbf{procedure \textit{recEnumBitStrings}(soFar,n)}]

\item \{enumerate all strings consisting of \textit{soFar} concatenated with a bit-string of length \textit{n}\}

\begin{enumerate*}[label=\textbf{if \textit{n}=0 then begin print \textit{soFar}; return end}]

\item \textit{enumBitStrings}(\textit{soFar}·‘0’, \textit{n}−1)

\item \textit{enumBitStrings}(\textit{soFar}·‘1’, \textit{n}−1)

\end{enumerate*}

\end{enumerate*}

\begin{enumerate*}[label=\textbf{procedure \textit{enumBitStrings}(n∈\mathbb{N})}]

\item \textit{recEnumBitStrings}(\epsilon, \textit{n}) \{\textit{soFar}=empty str\}

\end{enumerate*}

\end{enumerate}

\end{enumerate}
Generating the Next Bit String

• Note that this is essentially just a binary increment ("add 1") operation.

procedure nextBitString\(b_{n-1}\ldots b_0\): bit string
\(i:=0\); \{start at right end of string\}
while \(b_i = 1\) and \(i<n\) begin \{trailing 1s\}
\(b_i := 0\); \(i:=i+1\) end \{change to 0s\}
if \(i=n\) then return "no more" else begin
\(b_i = 1\); return \(b_{n-1}\ldots b_0\) end \{chg. 0→1\}
Generating r-combinations

- How do we list all r-combinations of the set $\{1,\ldots,n\}$?
- Since the order of elements in a combination doesn’t matter, we can always list them from smallest to largest.
- We can thus do it by enumerating the possible smallest items, then for each, enumerating the possible next-smallest items, etc.
A Recursive r-comb. Generator

procedure $recEnumRCombs(min,j,r,n)$
 if $j>n$ then print $comb_1,\ldots,comb_n$; return
 for $i:=\min$ to $n-r+1$ begin
 $comb_j = i$
 $recEnumRCombs(i+1, j+1, r-1, n)$
 end
Generating Next r-combination

procedure $nextRComb(\{a_1,\ldots,a_r\} \subset \{1,\ldots,n\}$
with $a_i < a_{i+1}$)

{Find the last item that can be inc’d}

$i := r$; \textbf{while} $a_i = n-r+i$ \textbf{do} $i := i-1$

$a_i := a_i + 1$ \hfill \{Increment it\}

\textbf{for} $j := i+1$ \textbf{to} r \hfill \{Set remaining items\}

$a_j := a_j + j - i$ \hfill \{to the subsequent #’s\}

return $\{a_1,\ldots,a_r\}$