Today’s topics

• Relations
 – Kinds of relations
 – n-ary relations
 – Representations of relations

• Reading: Sections 7.1-7.3

• Upcoming
 – Minesweeper
Binary Relations

- Let A, B be any sets. A *binary relation* R from A to B, written (with signature) $R:A \times B$, or $R:A,B$, is (can be identified with) a subset of the set $A \times B$.
 - *E.g.*, let $\langle \colon \mathbb{N} \leftrightarrow \mathbb{N} \rangle := \{(n,m) \mid n < m\}$
- The notation $a R b$ or aRb means that $(a,b) \in R$.
 - *E.g.*, $a < b$ means $(a,b) \in \langle$.
- If aRb we may say “a is related to b (by relation R)”,
 - or just “a relates to b (under relation R)”.
- A binary relation R corresponds to a predicate function $P_R:A \times B \to \{T,F\}$ defined over the 2 sets A,B;
 - *e.g.*, predicate “eats” $:= \{(a,b)\mid$ organism a eats food $b\}$
Complementary Relations

• Let $R:A,B$ be any binary relation.
• Then, $\bar{R}:A\times B$, the complement of R, is the binary relation defined by
 $$\bar{R} : \{(a,b) \mid (a,b) \notin R\} = (A\times B) - R$$
• Note this is just \bar{R} if the universe of discourse is $U = A\times B$; thus the name complement.
• Note the complement of \bar{R} is R.

Example: $\prec = \{(a,b) \mid (a,b) \notin \prec\} = \{(a,b) \mid \neg a < b\} = \succeq$
Inverse Relations

• Any binary relation $R:A \times B$ has an inverse relation $R^{-1}:B \times A$, defined by

 \[R^{-1} \equiv \{(b,a) \mid (a,b)\in R\}. \]

 E.g., $\prec^{-1} = \{(b,a) \mid a< b\} = \{(b,a) \mid b>a\} = >$.

• E.g., if R:People→Foods is defined by $a \mathrel{R} b \iff a$ eats b, then:

 \[b \mathrel{R^{-1}} a \iff b$ is eaten by $a. \] (Passive voice.)
Relations on a Set

• A (binary) relation from a set A to itself is called a relation on the set A.

• *E.g.*, the “$<$” relation from earlier was defined as a relation on the set \mathbb{N} of natural numbers.

• The (binary) identity relation I_A on a set A is the set $\{(a,a) | a \in A\}$.
Reflexivity

- A relation R on A is *reflexive* if $\forall a \in A, aRa$.
 - *E.g.*, the relation $\geq := \{(a,b) \mid a \geq b\}$ is reflexive.

- A relation R is *irreflexive* iff its *complementary* relation R^c is reflexive.
 - Example: $<$ is irreflexive, because \geq is reflexive.
 - Note “irreflexive” does NOT mean “not reflexive”!
 - For example: the relation “likes” between people is not reflexive, but it is not irreflexive either.
 - Since not everyone likes themselves, but not everyone dislikes themselves either!
Symmetry & Antisymmetry

• A binary relation R on A is *symmetric* iff $R = R^{-1}$, that is, if $(a,b) \in R \iff (b,a) \in R$.
 - *E.g.*, $=$ (equality) is symmetric. $<$ is not.
 - “is married to” is symmetric, “likes” is not.

• A binary relation R is *antisymmetric* if $orall a \neq b, (a,b) \in R \rightarrow (b,a) \notin R$.
 - *Examples*: $<$ is antisymmetric, “likes” is not.
 - *Exercise*: prove this definition of antisymmetric is equivalent to the statement that $R \cap R^{-1} \subseteq I_A$.

Transitivity

- A relation R is transitive iff (for all a,b,c)
 $$(a,b)\in R \land (b,c)\in R \rightarrow (a,c)\in R.$$
- A relation is intransitive iff it is not transitive.
- Some examples:
 - “is an ancestor of” is transitive.
 - “likes” between people is intransitive.
 - “is located within 1 mile of” is…?
Totality

- A relation $R: A \times B$ is *total* if for every $a \in A$, there is at least one $b \in B$ such that $(a,b) \in R$.
- If R is not total, then it is called *strictly partial*.
- A *partial relation* is a relation that might be strictly partial. (Or, it might be total.)
 - In other words, all relations are considered “partial.”
Functionality

• A relation \(R:A \times B \) is \textit{functional} if, for any \(a \in A \), there is \textit{at most 1} \(b \in B \) such that \((a,b) \in R\).

 – “\(R \) is functional” \(\iff \) \(\forall a \in A : \neg \exists b_1 \neq b_2 \in B : aRb_1 \land aRb_2 \).

 – Iff \(R \) is functional, then it corresponds to a partial function \(R:A \to B \)

 • where \(R(a) = b \iff aRb; \ \text{e.g.} \)

 – E.g., The relation \(aRb : = “a + b = 0” \) yields the function \(-(a) = b \).

• \(R \) is \textit{antifunctional} if its inverse relation \(R^{-1} \) is functional.

 – Note: A functional relation (partial function) that is also antifunctional is an \textit{invertible} partial function.

• \(R \) is a \textit{total function} \(R:A \to B \) if it is both functional and total, that is, for any \(a \in A \), there is \textit{exactly 1} \(b \) such that \((a,b) \in R\).

I.e., \(\forall a \in A : \neg \exists ! b : aRb \).

 – If \(R \) is functional but not total, then it is a \textit{strictly partial function}.

 – \textbf{Exercise:} Show that iff \(R \) is functional and antifunctional, and both it and its inverse are total, then it is a bijective function.
Lambda Notation

• The lambda calculus is a formal mathematical language for defining and operating on functions.
 – It is the mathematical foundation of a number of functional (recursive function-based) programming languages, such as LISP and ML.
• It is based on lambda notation, in which “\(\lambda a: f(a) \)” is a way to denote the function \(f \) without ever assigning it a specific symbol.
 – E.g., \((\lambda x. 3x^2+2x) \) is a name for the function \(f: \mathbb{R} \rightarrow \mathbb{R} \) where \(f(x) = 3x^2+2x \).
• Lambda notation and the “such that” operator “\(\exists \)” can also be used to compose an expression for the function that corresponds to any given functional relation.
 – Let \(R: A \times B \) be any functional relation on \(A, B \).
 – Then the expression \((\lambda a: b \in aRb) \) denotes the function \(f: A \rightarrow B \) where \(f(a) = b \) iff \(aRb \).
 • E.g., If I write: \(f : (\lambda a: b \in a+b = 0) \),
 this is one way of defining the function \(f(a) = -a \).
Composite Relations

- Let $R: A \times B$, and $S: B \times C$. Then the composite $S \circ R$ of R and S is defined as:
 \[S \circ R = \{(a,c) \mid \exists b: aRb \land bSc\} \]
- Note that function composition $f \circ g$ is an example.
- Exer.: Prove that $R: A \times A$ is transitive iff $R \circ R = R$.
- The n^{th} power R^n of a relation R on a set A can be defined recursively by:
 \[R^0 := I_A ; \quad R^{n+1} := R^n \circ R \quad \text{for all } n \geq 0. \]
 - Negative powers of R can also be defined if desired, by $R^{-n} := (R^{-1})^n$.
§7.2: \(n \)-ary Relations

- An \(n \)-ary relation \(R \) on sets \(A_1, \ldots, A_n \), written (with signature) \(R : A_1 \times \ldots \times A_n \) or \(R : A_1, \ldots, A_n \), is simply a subset \(R \subseteq A_1 \times \ldots \times A_n \).

- The sets \(A_i \) are called the \textit{domains} of \(R \).

- The \textit{degree} of \(R \) is \(n \).

- \(R \) is \textit{functional in the domain} \(A_i \) if it contains at most one \(n \)-tuple \((\ldots, a_i, \ldots)\) for any value \(a_i \) within domain \(A_i \).
Relational Databases

• A *relational database* is essentially just an n-ary relation R.
• A domain A_i is a *primary key* for the database if the relation R is functional in A_i.
• A *composite key* for the database is a set of domains $\{A_i, A_j, \ldots\}$ such that R contains at most 1 n-tuple $(\ldots,a_i,\ldots,a_j,\ldots)$ for each composite value $(a_i, a_j,\ldots) \in A_i \times A_j \times \ldots$
Selection Operators

• Let A be any n-ary domain $A = A_1 \times \ldots \times A_n$, and let $C:A \rightarrow \{T,F\}$ be any condition (predicate) on elements (n-tuples) of A.

• Then, the selection operator s_C is the operator that maps any (n-ary) relation R on A to the n-ary relation of all n-tuples from R that satisfy C.

 – I.e., $\forall R \subseteq A$, $s_C(R) = \{ a \in R \mid s_C(a) = T \}$
Selection Operator Example

- Suppose we have a domain
 \[A = \text{StudentName} \times \text{Standing} \times \text{SocSecNos} \]
- Suppose we define a certain condition on \(A \),
 \[\text{UpperLevel}(\text{name}, \text{standing}, \text{ssn}) \equiv \]
 \[[(\text{standing} = \text{junior}) \lor (\text{standing} = \text{senior})] \]
- Then, \(s_{\text{UpperLevel}} \) is the selection operator that takes any relation \(R \) on \(A \) (database of students) and produces a relation consisting of just the upper-level classes (juniors and seniors).
Projection Operators

- Let $A = A_1 \times \ldots \times A_n$ be any n-ary domain, and let $\{i_k\} = (i_1, \ldots, i_m)$ be a sequence of indices all falling in the range 1 to n,
 - That is, where $1 \leq i_k \leq n$ for all $1 \leq k \leq m$.
- Then the projection operator on n-tuples

$$P_{\{i_k\}} : A \rightarrow A_{i_1} \times K \times A_{i_m}$$

is defined by:

$$P_{\{i_k\}}(a_1, \ldots, a_n) = (a_{i_1}, \ldots, a_{i_m})$$
Projection Example

• Suppose we have a ternary (3-ary) domain $\text{Cars}=\text{Model} \times \text{Year} \times \text{Color}$. (note $n=3$).

• Consider the index sequence $\{i_k\} = 1,3$. ($m=2$)

• Then the projection $P_{\{i_k\}}$ simply maps each tuple $(a_1,a_2,a_3) = (\text{model}, \text{year}, \text{color})$ to its image:

$$ (a_{i_1}, a_{i_2}) = (a_1, a_3) = (\text{model}, \text{color}) $$

• This operator can be usefully applied to a whole relation $R \subseteq \text{Cars}$ (a database of cars) to obtain a list of the model/color combinations available.
Join Operator

- Puts two relations together to form a sort of combined relation.
- If the tuple \((A,B)\) appears in \(R_1\), and the tuple \((B,C)\) appears in \(R_2\), then the tuple \((A,B,C)\) appears in the join \(J(R_1,R_2)\).
 - \(A\), \(B\), and \(C\) here can also be sequences of elements (across multiple fields), not just single elements.
Join Example

- Suppose R_1 is a teaching assignment table, relating Professors to Courses.
- Suppose R_2 is a room assignment table relating Courses to Rooms, Times.
- Then $J(R_1,R_2)$ is like your class schedule, listing (professor, course, room, time).
§7.3: Representing Relations

• Some ways to represent n-ary relations:
 – With an explicit list or table of its tuples.
 – With a function from the domain to $\{T,F\}$.
 • Or with an algorithm for computing this function.

• Some special ways to represent binary relations:
 – With a zero-one matrix.
 – With a directed graph.
Using Zero-One Matrices

• To represent a binary relation \(R : A \times B \) by an \(|A| \times |B|\) 0-1 matrix \(M_R = [m_{ij}] \), let \(m_{ij} = 1 \) iff \((a_i,b_j) \in R\).

• *E.g.*, Suppose Joe likes Susan and Mary, Fred likes Mary, and Mark likes Sally.

• Then the 0-1 matrix representation of the relation \(\text{Likes: Boys} \times \text{Girls} \) relation is:

\[
\begin{array}{ccc}
\text{Susan} & \text{Mary} & \text{Sally} \\
\text{Joe} & 1 & 1 & 0 \\
\text{Fred} & 0 & 1 & 0 \\
\text{Mark} & 0 & 0 & 1 \\
\end{array}
\]
Zero-One Reflexive, Symmetric

- **Terms:** Reflexive, non-reflexive, irreflexive, symmetric, asymmetric, and antisymmetric.
 - These relation characteristics are very easy to recognize by inspection of the zero-one matrix.

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
\end{bmatrix}
\]

- **Reflexive:** all 1’s on diagonal
- **Irreflexive:** all 0’s on diagonal
- **Symmetric:** all identical across diagonal
- **Antisymmetric:** all 1’s are across from 0’s
Using Directed Graphs

- A directed graph or digraph $G=(V_G,E_G)$ is a set V_G of vertices (nodes) with a set $E_G \subseteq V_G \times V_G$ of edges (arcs, links). Visually represented using dots for nodes, and arrows for edges. Notice that a relation $R:A \times B$ can be represented as a graph $G_R=(V_G=A \cup B, E_G=R)$.

Matrix representation M_R:

\[
\begin{bmatrix}
\text{Susan} & \text{Mary} & \text{Sally} \\
\hline
\text{Joe} & 1 & 1 & 0 \\
\text{Fred} & 0 & 1 & 0 \\
\text{Mark} & 0 & 0 & 1
\end{bmatrix}
\]

Graph rep. G_R:

- Edge set E_G (blue arrows)
- Node set V_G (black dots)
Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive/irreflexive/symmetric/antisymmetric properties by graph inspection.

Reflexive: Every node has a self-loop
Irreflexive: No node links to itself
Symmetric: Every link is bidirectional
Antisymmetric: No link is bidirectional

These are asymmetric & non-antisymmetric
These are non-reflexive & non-irreflexive