Definition: A language L is recursively enumerable if there exists a TM M such that $L = L(M)$.

Enumeration procedure for recursive languages

To enumerate all $w \in \Sigma^+$ in a recursive language L:

- Let M be a TM that recognizes L, $L = L(M)$.
- Construct 2-tape TM M'
 - Tape 1 will enumerate the strings in Σ^+
 - Tape 2 will enumerate the strings in L.
 - On tape 1 generate the next string v in Σ^+
 - simulate M on v
 - if M accepts v, then write v on tape 2.
Enumeration procedure for recursively enumerable languages

To enumerate all \(w \in \Sigma^+ \) in a recursively enumerable language \(L \):

Repeat forever

- Generate next string (Suppose \(k \) strings have been generated: \(w_1, w_2, \ldots, w_k \))
- Run \(M \) for one step on \(w_k \)
 - Run \(M \) for two steps on \(w_{k-1} \)
 - ...
 - Run \(M \) for \(k \) steps on \(w_1 \)
- If any of the strings are accepted then write them to tape 2.

Theorem Let \(S \) be an infinite countable set. Its powerset \(2^S \) is not countable.

Proof - Diagonalization

- \(S \) is countable, so it’s elements can be enumerated.
 \(S = \{s_1, s_2, s_3, s_4, s_5, s_6, \ldots\} \)
 An element \(t \in 2^S \) can be represented by a sequence of 0’s and 1’s such that the \(i \)th position in \(t \) is 1 if \(s_i \) is in \(t \), 0 if \(s_i \) is not in \(t \).

 Example, \(\{s_2, s_3, s_5\} \) represented by

 Example, set containing every other element from \(S \), starting with \(s_1 \) is \(\{s_1, s_3, s_5, s_7, \ldots\} \) represented by

 Suppose \(2^S \) countable. Then we can enumerate all its elements: \(t_1, t_2, \ldots \)

\[
\begin{array}{cccccccc}
 & s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & \ldots \\
 t_1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & \ldots \\
t_2 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & \ldots \\
t_3 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \ldots \\
t_4 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & \ldots \\
t_5 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & \ldots \\
t_6 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & \ldots \\
t_7 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & \ldots \\
\ldots & & & & & & & & \\
\end{array}
\]

2
Theorem For any nonempty Σ, there exist languages that are not recursively enumerable.

Proof:

- A language is a subset of Σ^*.
 The set of all languages over Σ is

Theorem There exists a recursively enumerable language L such that \tilde{L} is not recursively enumerable.

Proof:

- Let $\Sigma = \{a\}$
 Enumerate all TM’s over Σ:

<table>
<thead>
<tr>
<th>$L(M_1)$</th>
<th>a a</th>
<th>aa</th>
<th>aaa</th>
<th>aaaa</th>
<th>aaaaa</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$L(M_2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$L(M_3)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$L(M_4)$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$L(M_5)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The next two theorems in conjunction with the previous theorem will show that there are some languages that are recursively enumerable, but not recursive.

Theorem If languages L and \bar{L} are both RE, then L is recursive.

Proof:

- There exists an M_1 such that M_1 can enumerate all elements in L.
- There exists an M_2 such that M_2 can enumerate all elements in \bar{L}.
- To determine if a string w is in L or not in L perform the following algorithm:

Theorem: If L is recursive, then \bar{L} is recursive.

Proof:

- L is recursive, then there exists a TM M such that M can determine if w is in L or w is not in L. M outputs a 1 if a string w is in L, and outputs a 0 if a string w is not in L.
- Construct TM M' that does the following. M' first simulates TM M. If TM M halts with a 1, then M' erases the 1 and writes a 0. If TM M halts with a 0, then M' erases the 0 and writes a 1.

Hierarchy of Languages:
Definition A grammar $G=(V,T,S,P)$ is *unrestricted* if all productions are of the form

$$u \rightarrow v$$

where $u \in (V \cup T)^+$ and $v \in (V \cup T)^*$

Example:
Let $G=(\{S,A,X\},\{a,b\},S,P)$, $P=$

$$S \rightarrow bAaaX$$
$$bAa \rightarrow abA$$
$$AX \rightarrow \lambda$$

Example Find an unrestricted grammar G s.t. $L(G)=\{a^n b^n c^n | n > 0\}$

$G=(V,T,S,P)$
$V=\{S,A,B,D,E,X\}$
$T=\{a,b,c\}$
$P=$

1) $S \rightarrow AX$
2) $A \rightarrow aAbc$
3) $A \rightarrow aBbc$
4) $Bb \rightarrow bB$
5) $Bc \rightarrow D$
6) $Dc \rightarrow cD$
7) $Db \rightarrow bD$
8) $DX \rightarrow EXc$

There are some rules missing in the grammar.

To derive string $aabbcccc$, use productions 1, 2 and 3 to generate a string that has the correct number of a’s b’s and c’s. The a’s will all be together, but the b’s and c’s will be intertwined.

$$S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aaAbbcX \Rightarrow aaaBbccccX$$
Theorem If G is an unrestricted grammar, then $L(G)$ is recursively enumerable.

Proof:

- List all strings that can be derived in one step.
- List all strings that can be derived in two steps.

Theorem If L is recursively enumerable, then there exists an unrestricted grammar G such that $L=L(G)$.

Proof:

- L is recursively enumerable.
 \Rightarrow there exists a TM M such that $L(M)=L$.
 $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$
 $q_0w \Rightarrow x_1q_fy$ for some $q_f \in F$, $x_1, x_2 \in \Gamma^*$
 Construct an unrestricted grammar G s.t. $L(G)=L(M)$.
 $S \Rightarrow w$

Three steps

1. $S \Rightarrow B \ldots B\#xq_fyB\ldots B$
 with $x,y \in \Gamma^*$ for every possible combination
2. $B \ldots B\#xq_fyB\ldots B \Rightarrow B \ldots B\#q_0wB\ldots B$
3. $B \ldots B\#q_0wB\ldots B \Rightarrow w$
Definition A grammar G is *context-sensitive* if all productions are of the form

$$x \rightarrow y$$

where $x, y \in (V \cup T)^+$ and $|x| \leq |y|$.

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that $L=L(G)$ or $L=L(G) \cup \{\lambda\}$.

Theorem For every CSL L not including λ, \exists an LBA M s.t. $L=L(M)$.

Theorem If L is accepted by an LBA M, then \exists CSG G s.t. $L(M)=L(G)$.

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.