Chapter 7.2

Theorem Given NPDA M that accepts by final state, \exists NPDA M' that accepts by empty stack s.t. $L(M) = L(M')$.

- **Proof** (sketch)

 $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$

 Construct $M' = (Q', \Sigma, \Gamma', \delta', q_s, z', F')$

Theorem Given NPDA M that accepts by empty stack, \exists NPDA M' that accepts by final state.

- **Proof**: (sketch)

 $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$

 Construct $M' = (Q', \Sigma, \Gamma', \delta', q_s, z', F')$
Theorem For any CFL L not containing λ, \exists an NPDA M s.t. $L=L(M)$.

- **Proof** (sketch)
 Given (λ-free) CFL L.
 $\Rightarrow \exists$ CFG G such that $L=L(G)$.
 $\Rightarrow \exists G'$ in GNF, s.t. $L(G)=L(G')$.
 $G'=(V,T,S,P)$. All productions in P are of the form:

Example: Let $G'=(V,T,S,P)$, $P=$

\[
S \rightarrow aSA \mid aAA \mid b \\
A \rightarrow bBBB \\
B \rightarrow b
\]
Theorem Given a NPDA \(M \), \(\exists \) a NPDA \(M' \) s.t. all transitions have the form \(\delta(q_i,a,A) = \{ c_1, c_2, \ldots, c_n \} \) where

\[
\begin{align*}
c_i &= (q_j, \lambda) \\
\text{or} \quad c_i &= (q_j, BC)
\end{align*}
\]

Each move either increases or decreases stack contents by a single symbol.

- **Proof** (sketch)
Theorem If $L = L(M)$ for some NPDA M, then L is a CFL.

Proof: Given NPDA M.

First, construct an equivalent NPDA M that will be easier to work with. Construct M' such that

1. accepts if stack is empty
2. each move increases or decreases stack content by a single symbol. (can only push 2 variables or no variables with each transition)

$M' = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$

Construct $G = (V, \Sigma, S, P)$ where

$V = \{ (q_i, c, q_j) | q_i, q_j \in Q, c \in \Gamma \}$

(q_i, c, q_j) represents “starting at state q_i, the stack contents are cw, $w \in \Gamma^*$, some path is followed to state q_j and the contents of the stack are now w”.

Goal: (q_0, z, q_f) which will be the start symbol in the grammar.

Meaning: We start in state q_0 with z on the stack and process the input tape. Eventually we will reach the final state q_f and the stack will be empty. (Along the way we may push symbols on the stack, but these symbols will be popped from the stack).
Example:

$L(M) = \{ \text{aa}^* \text{b} \}$, $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$, $Q = \{ q_0, q_1, q_2, q_3 \}$, $\Sigma = \{ a, b \}$, $\Gamma = \{ A, z \}$, $F = \{ \}$. M accepts by empty stack.

Construct the grammar $G = (V, T, S, P)$,

$V = \{ (q_0 A q_0), (q_0 z q_0), (q_0 A q_1), (q_0 z q_1), \ldots \}$

$T = \Sigma$

$S = (q_0 z q_2)$
Recognizing $aaab$ in M:

From transition 1 \((q_0Aq_1) \rightarrow b\)

From transition 2 \((q_1zq_2) \rightarrow \lambda\)

From transition 3 \((q_0Aq_3) \rightarrow a\)

From transition 4 \((q_0zq_0) \rightarrow a(q_0Aq_0)(q_0zq_0)|\)
\(a(q_0AQ_1)(q_1zq_0)|\)
\(a(q_0AQ_2)(q_2zq_0)|\)
\(a(q_0AQ_3)(q_3zq_0)|\)
\((q_0zq_1) \rightarrow a(q_0AQ_0)(q_0zq_1)|\)
\(a(q_0AQ_1)(q_1zq_1)|\)
\(a(q_0AQ_2)(q_2zq_1)|\)
\(a(q_0AQ_3)(q_3zq_1)|\)
\((q_0zq_2) \rightarrow a(q_0AQ_0)(q_0zq_2)|\)
\(a(q_0AQ_1)(q_1zq_2)|\)
\(a(q_0AQ_2)(q_2zq_2)|\)
\(a(q_0AQ_3)(q_3zq_2)|\)
\((q_0zq_3) \rightarrow a(q_0AQ_0)(q_0zq_3)|\)
\(a(q_0AQ_1)(q_1zq_3)|\)
\(a(q_0AQ_2)(q_2zq_3)|\)
\(a(q_0AQ_3)(q_3zq_3)|\)

From transition 5 \((q_3zq_0) \rightarrow (q_0AQ_0)(q_0zq_0)|\)
\((q_0AQ_1)(q_1zq_0)|\)
\((q_0AQ_2)(q_2zq_0)|\)
\((q_0AQ_3)(q_3zq_0)|\)

Derivation of string $aaab$ in G:

\((q_0zq_2) \Rightarrow a(q_0AQ_3)(q_3zq_2)\)
\(\Rightarrow aa(q_3zq_2)\)
\(\Rightarrow aa(q_0AQ_3)(q_3zq_2)\)
\(\Rightarrow aa(a(q_3zq_2)\)
\(\Rightarrow aa(a(q_0AQ_1)(q_1zq_2)\)
\(\Rightarrow aaab(q_1zq_2)\)
\(\Rightarrow aaab\)
Chapter 7.3

Definition: A PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ is deterministic if for every $q \in Q$, $a \in \Sigma \cup \{\lambda\}$, $b \in \Gamma$

1. $\delta(q, a, b)$ contains at most 1 element
2. if $\delta(q, \lambda, b) \neq \emptyset$ then $\delta(q, c, b) = \emptyset$ for all $c \in \Sigma$

Definition: L is DCFL iff \exists DPDA M s.t. $L = L(M)$.

Examples:

1. Previous pda for $\{a^n b^n | n \geq 0\}$ is deterministic.
2. Previous pda for $\{a^n b^n c^{n+m} | n, m > 0\}$ is deterministic.
3. Previous pda for $\{ww^R | w \in \Sigma^+\}, \Sigma = \{a, b\}$ is nondeterministic.

Note: There are CFL's that are not deterministic.

$L = \{a^n b^n | n \geq 1\} \cup \{a^n b^{2n} | n \geq 1\}$ is a CFL and not a DCFL.

- **Proof:** $L = \{a^n b^n : n \geq 1\} \cup \{a^n b^{2n} : n \geq 1\}$

 It is easy to construct a NPDA for $\{a^n b^n : n \geq 1\}$ and a NPDA for $\{a^n b^{2n} : n \geq 1\}$. These two can be joined together by a new start state and λ-transitions to create a NPDA for L. Thus, L is CFL.

 Now show L is not a DCFL. Assume that there is a deterministic PDA M such that $L = L(M)$. We will construct a PDA that recognizes a language that is not a CFL and derive a contradiction.

 Construct a PDA M' as follows:

 1. Create two copies of M: M_1 and M_2. The same state in M_1 and M_2 are called cousins.
 2. Remove accept status from accept states in M_1, remove initial status from initial state in M_2. In our new PDA, we will start in M_1 and accept in M_2.
 3. Outgoing arcs from old accept states in M_1, change to end up in the cousin of its destination in M_2. This joins M_1 and M_2 into one PDA. There must be an outgoing arc since you must recognize both $a^n b^n$ and $a^n b^{2n}$. After reading n b's, must accept if no more b's and continue if there are more b's.
 4. Modify all transitions that read a b and have their destinations in M_2 to read a c.

 This is the construction of our new PDA.

 When we read $a^n b^n$ and end up in an old accept state in M_1, then we will transfer to M_2 and read the rest of $a^n b^{2n}$. Only the b's in M_2 have been replaced by c's, so the new machine accepts $a^n b^n c^n$.

 The language accepted by our new PDA is $a^n b^n c^n$. But this is not a CFL. Contradiction! Thus there is no deterministic PDA M such that $L(M) = L$. Q.E.D.