Review

Regular Languages

- FA, RG, RE
- recognize

Context Free Languages

- PDA, CFG
- recognize

DFA:

Turing Machine:

Turing Machine (TM)

- invented by Alan M. Turing (1936)
- computational model to study algorithms
Definition of TM

- **Storage**
 - tape
- **actions**
 - write symbol
 - read symbol
 - move left (L) or right (R)
- **computation**
 - initial configuration
 * start state
 * tape head on leftmost tape square
 * input string followed by blanks
 - processing computation
 * move tape head left or right
 * read from and write to tape
 - computation halts
 * final state

Formal Definition of TM

A TM M is defined by $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ where

- Q is finite set of states
- Σ is input alphabet
- Γ is tape alphabet
- $B \in \Gamma$ is blank
- q_0 is start state
- F is set of final states
- δ is transition function

$\delta(q,a) = (p,b,R)$ means “if in state q with the tape head pointing to an ‘a’, then move into state p, write a ‘b’ on the tape and move to the right”.

TM as Language recognizer

Definition: Configuration is denoted by \vdash.

If $\delta(q,a) = (p,b,R)$ then a move is denoted

$abaqabba \vdash ababpbba$
Definition: Let M be a TM, $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$. $L(M) = \{ w \in \Sigma^* | q_0 \stackrel{*}{\rightarrow} x_1q_fx_2 \text{ for some } q_f \in F, x_1, x_2 \in \Gamma^* \}$

TM as language acceptor

M is a TM, w is in Σ^*,

- if $w \in L(M)$ then M halts in final state
- if $w \notin L(M)$ then either
 - M halts in non-final state
 - M doesn’t halt

Example

$\Sigma = \{a, b\}$

Replace every second 'a' by a 'b' if string is even length.

- Algorithm
Example:

$L = \{ a^n b^n c^n | n \geq 1 \}$

Is the following TM correct?

TM as a transducer

TM can implement a function: $f(w) = w'$

<table>
<thead>
<tr>
<th>Start with: w</th>
</tr>
</thead>
<tbody>
<tr>
<td>\uparrow</td>
</tr>
<tr>
<td>End with: w'</td>
</tr>
<tr>
<td>\uparrow</td>
</tr>
</tbody>
</table>

Definition: A function with domain D is *Turing-computable or computable* if there exists TM $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ such that

$q_0 w \vdash^* q_f f(w)$

$q_f \in F$, for all $w \in D$.

Example:

$f(x) = 2x$

x is a unary number

<table>
<thead>
<tr>
<th>Start with: 111</th>
</tr>
</thead>
<tbody>
<tr>
<td>\uparrow</td>
</tr>
<tr>
<td>End with: 111111</td>
</tr>
<tr>
<td>\uparrow</td>
</tr>
</tbody>
</table>
Is the following TM correct?

Example:

$L=\{ww \mid w \in \Sigma^+\}$, $\Sigma=\{a, b\}$