
1

Outline for Today
• Objectives:

– To introduce the critical section problem.
– To learn how to reason about the correctness

of concurrent programs.
– To present Linux kernel synchronization

• Administrative details:

2

To capture naturally concurrent activities
– Waiting for slow devices
– Providing human users faster response.
– Shared network servers multiplexing among client requests

(each client served by its own server thread)

To gain speedup by exploiting parallelism in hardware
– Maintenance tasks performed “in the background”
– Multiprocessors
– Overlap the asynchronous and independent functioning of devices

and users
Within a single user thread – signal handlers cause

asynchronous control flow.

Reasons for Explicitly
Programming with Threads

(User-level Perspective – Birrell)

3

Concurrency from the
Kernel Perspective

• Kernel preemption – scheduler can preempt task
executing in kernel.

• Interrupts occurring – asynchronously invoking
handler that disrupts the execution flow.

• Sleeping to wait for events.
• Support for SMP multiprocessors – true

concurrency of code executing on shared
memory locations.

4

The Trouble with Concurrency
in Threads...

Thread0 Thread1

Data: x

while(i<10)
{x=x+1;

i++;}

0

while(j<10)
{x=x+1;

j++;}

0 0i j

What is the value of x when both threads
leave this while loop?

5

Range of Answers
Process 0
LD x // x currently 0

Add 1
ST x // x now 1, stored over 9

Do 9 more full loops // leaving x at 10

Process1

LD x // x currently 0
Add 1
ST x // x now 1
Do 8 more full loops // x = 9

LD x // x now 1

Add 1
ST x // x = 2 stored over 10

6

Reasoning about Concurrency
• What unit of work can be performed without

interruption? Indivisible or atomic
operations.

• Interleavings - possible execution
sequences of operations drawn from all
threads.

• Race condition - final results depend on
ordering and may not be “correct”.

The Trouble with Concurrency
• Two threads (T1,T2) in one address space or two processes in the

kernel
• One counter (shared)

ld r2, count
add r1, r2, r3
st count, r1

Shared Data
count

ld r2, count
add r1, r2, r3
st count, r1Ti

m
e

T1 T2 count
ld (count)
add
switch

ld (count)
add
st (count+1)

count+1
switch

st (count+1) count+1

Assumed
atomic

private

Desired: Atomic Sequence of Instructions

• Atomic Sequence
– Appears to execute to completion without any

intervening operations

Ti
m

e

T1 T2 count
begin atomic
ld (count)
add
switch

begin atomic
st (count+1) count+1
end atomic
switch

ld (count+1)
add
st (count+2) count+2
end atomic

wait

9

Unprotected Shared Data
void threadcode()
{

int i;
long key;
for (i=0; i<20; i++){

key = rand();
SortedInsert (key);}

for (i=0; i<20; i++){
key = SortedRemove();
print (key); }

} What can happen here?

private

10 20 30 null

head

10

Unprotected Shared Data

What can happen here?

20 30 null

head

• 2 concurrent
SortedInserts with
keys 5 and 7.

5

7

10

11

Unprotected Shared Data

What can happen here?

20 30 null

head

• 2 concurrent
SortedInserts with
keys 5 and 7.

• 2 concurrent
SortedRemoves 10

localptr

localptr

12

Critical Sections
• If a sequence of non-atomic operations must be

executed as if it were atomic in order to be correct,
then we need to provide a way to constrain the
possible interleavings
– Critical sections are defined as code sequences that

contribute to “bad” race conditions.
– Synchronization is needed around such critical sections.

• Mutual Exclusion - goal is to ensure that critical
sections execute atomically w.r.t. related critical
sections in other threads or processes.

13

The Critical Section Problem
Each process follows this template:

while (1)
{ ...other stuff... //processes in here shouldn’t stop others

enter_region();
critical section
exit_region();

}
The problem is to implement enter_region and

exit_region to ensure mutual exclusion with some
degree of fairness.

Problem with this definition:
It focuses on code
not shared data
that needs protecting!

14

Temptation to Protect
Critical Sections

(Badly)void threadcode()
{

int i;
long key;
for (i=0; i<20; i++){

key = rand();

SortedInsert (key);

}
for (i=0; i<20; i++){

key = SortedRemove();

print (key); }
}

10 20 30 null

head

Acquire(insertmutex);

Release(insertmutex);

Acquire(removemutex);

Release(removemutex);

Focus on the data!

15

Temptation to Protect
Critical Sections

(Badly)void threadcode()
{

int i;
long key;
for (i=0; i<20; i++){

key = rand();

SortedInsert (key);

}
for (i=0; i<20; i++){

key = SortedRemove();

print (key); }
}

10 20 30 null

head

Acquire(listmutex);

Release(listmutex);

Acquire(listmutex);

Release(listmutex);

Focus on the data!

16

Yet Another Example

Problem: Given arrays C[0:x,0:y], A [0:x,0:y],
and B [0:x,0:y]. Use n threads to update
each element of C to the sum of A and B
and then the last thread returns the
average value of all C elements.

17

• Static partitioning of arrays
for (i = lowi; i < highi; i++)

for (j = lowj; j < highj; j++)
{C[i,j] = A[i,j] + B[i,j];
privatesum = privatesum +
C[i,j]; }

sum = sum + privatesum;

• Static partitioning of arrays
for (i = lowi; i < highi; i++)

for (j = lowj; j < highj; j++)
{C[i,j] = A[i,j] + B[i,j];

sum = sum + C[i,j]; }

Design Alternatives

sum
C

lowi = 0
highi = n/2-1
lowj = 0
highj = n/2-1

lowi = n/2
highi = n-1
lowj = 0
highj = n/2-1

lowi = 0
highi = n/2-1
lowj = n/2
highj = n-1

lowi = n/2
highi = n-1
lowj = n/2
highj = n-1

18

• Dynamic partitioning of
arrays
while (elements_remain(&i,&j))
{C[i,j] = A[i,j] + B[i,j];
sum = sum + C[i,j]; }

Design Alternatives

sum
C

19

Implementation Options for
Mutual Exclusion

• Disable Interrupts
• Use atomic operations (read-mod-write instr.)
• Busywaiting solutions - spinlocks

– execute a tight loop if critical section is busy
– benefits from specialized atomic instructions

• Blocking synchronization
– sleep (enqueued on wait queue) while C.S. is busy

Synchronization primitives (abstractions, such as
locks) which are provided by a system may be
implemented with some combination of these
techniques.

20

The Critical Section Problem
while (1)
{ ...other stuff...

critical section – anything that touches a particular
set of shared data

}

enter_region();

exit_region();

21

Critical Data
• Goal in solving the critical section problem is to

build synchronization so that the sequence of
instructions that can cause a race condition are
executed AS IF they were indivisible
– “Other stuff” code that does not touch the critical data

associated with a critical section can be interleaved
with the critical section code.

– Code from a critical section involving data x can be
interleaved with code from a critical section associated
with data y.

22

The Critical Section Problem
while (1)
{ ...other stuff...

critical section – anything that touches a particular
set of shared data

}

local_irq_save(flags);

local_irq_restore(flags);

Overkill on UP
Insufficient for SMP

23

Disabling Preemption
while (1)
{ ...other stuff...

critical section – per-processor data

}

preempt_disable();

preempt_enable();

Milder impact on UP

24

Atomic Operations (Integer)
• Special data type atomic_t

– Prevent misuse and compiler optimizations
– Only 24 bit values (it’s SPARC’s fault)
– atomic_t u = ATOMIC_INIT (0);

• Selected operations (see p. 119)

o atomic_read
o atomic_set
o atomic_add
o atomic_inc

o atomic_sub_and_test
o atomic_add_negative
o atomic_inc_and_test

25

Atomic Operations (Bitwise)
• No special data type – take pointer and bit

number as arguments. Bit 0 is least sign. bit.
• Selected operations

o set_bit
o clear_bit
o change_bit
o test_bit

o test_and_set_bit
o test_and_clear_bit
o test_and_change_bit

26

Uses of Atomic Operations
static int x = 0;

threadcode()
{
int j = 0;
while(j<10)
//10 times per thread

{x=x+1;
j++;}

}

atomic_t x ATOMIC_INIT (0);

threadcode()
{
int j=0;
while(j<10)
//10 times per thread

{atomic_inc(&x);
j++;}

}

27

Uses of Atomic Operations
static int x = 0;
static int j = 11;

threadcode()
{
while((--j)!=0)
// 10 times in all

x=x+1;
}

atomic_t x ATOMIC_INIT (0);
atomic_t j ATOMIC_INIT (11);

threadcode()
{
while(!atomic_dec_and_test(&j))
//10 times in all

atomic_inc(&x);
}

28

Uses of Atomic Operations
while (1)
{ ...other stuff...

critical section – anything that touches a particular
set of shared data

}

//homegrown spinlock
while(test_and_set_bit(0, &busy);

clear_bit(0, &busy);

29

Linux Kernel Spinlocks

while (1)
{ ...other stuff...

critical section – anything that touches a particular
set of shared data

}

//canned spinlock
spin_lock(&busy);

spin_unlock(&busy);

spinlock_t busy = SPIN_LOCK_UNLOCKED;

30

Pros and Cons of Busywaiting
• Key characteristic - the “waiting” process is

actively executing instructions in the CPU and
using memory cycles.

• Appropriate when:
– High likelihood of finding the critical section

unoccupied (don’t take context switch just to find that out) or
estimated wait time is very short

– You have a processor all to yourself
– In interrupt context

• Disadvantages:
– Wastes resources (CPU, memory, bus bandwidth)

31

Spinlock Subtleties
• Using spinlock in interrupt handlers – disable local

interrupts before obtaining lock
• Saves (and restores) IRQ-enable state.

Disables while holding lock
spin_lock_irqsave (&lockvar, flags)

spin_unlock_irqrestore (&lockvar, flags)

spin_lock_irq (&lockvar)

spin_unlock_irq(&lockvar)

• Disabling bottom halves
spin_lock_bh() and spin_unlock_bh()

32

Pros and Cons of Blocking
• Sleeping processes/threads don’t consume

CPU cycles
• Appropriate: when the cost of a system call

is justified by expected waiting time
– High likelihood of contention for lock
– Long critical sections

• Disadvantage: context switch d overhead

33

Semaphores
• Well-known synchronization abstraction
• Defined as a non-negative integer with two

atomic operations
P(s) - [wait until s > 0; s--] or down(s)
V(s) - [s++] or up(s)

34

35

36

Semaphore Usage
• Binary semaphores can provide mutual

exclusion – mutex (solution to critical
section problem)

• Counting semaphores can represent a
resource with multiple instances (e.g.
solving producer/consumer problem)

• Signaling events (persistent events that
stay relevant even if nobody listening right
now)

37

while (1)
{ ...other stuff...

critical section

}

The Critical Section Problem

down_interruptable(&mutex);

up(&mutex);

static DECLARE_SEMAPHORE_GENERIC(mutex,1) or
static DECLARE_MUTEX(mutex)

Fill in the boxes

38

Lock Granularity – how much
should one lock protect?

2 4 6 8

103

head tail

A B

39

2 4 6 8

103

head tail

A B

Lock Granularity – how much
should one lock protect?

Concurrency vs. overhead
Complexity threatens correctness

40

Optimistic Locking – Seqlocks
• Sequence counter incremented on write
• Compare counter before and after a read
• Even counter value means data is stable
• Odd counter value means write in progress

Writes
write_seqlock(&lock);
// do write, lock is odd
write_sequnlock(&lock);
// write complete,
// lock is even

Reads
do {

old=read_seqbegin(&lock);
//reading data

}
while (read_seqretry(&lock, old));

41

Peterson’s Algorithm
for 2 Process Mutual Exclusion

• enter_region:
needin [me] = true;
turn = you;
while (needin [you] && turn == you) {no_op};

• exit_region:
needin [me] = false;

Based on the assumption
of atomic ld/st operations

42

Interleaving of Execution of 2
Threads (blue and green)

enter_region:
needin [me] = true;
turn = you;
while (needin [you] &&

turn == you) {no_op};
Critical Section
exit_region:

needin [me] = false;

enter_region:
needin [me] = true;
turn = you;
while (needin [you] &&

turn == you) {no_op};
Critical Section
exit_region:

needin [me] = false;

43

needin [blue] = true;

needin [green] = true;
turn = green;

turn = blue;
while (needin [green] && turn == green)

while (needin [blue] && turn == blue){no_op};

while (needin [blue] && turn == blue){no_op};

needin [blue] = false;

while (needin [blue] && turn == blue)

Critical Section

needin [green] = false;

Critical Section

44

Peterson’s Algorithm
for 2 Process Mutual Exclusion

• enter_region:
needin [me] = true;
turn = you;
while (needin [you] && turn == you) {no_op};

• exit_region:
needin [me] = false;

mb();

45

Barriers
• rmb – prevents loads being reordered across

barrier
• wmb – prevents reordering stores
• mb – both loads and stores
• read_barrier_depends – data-dependent loads
• SMP versions of above – compiles to barrier on

UP
• barrier – prevents compiler optimizations from

causing the reordering

46

Classic Synchronization
Problems

There are a number of “classic” problems that
represent a class of synchronization situations

• Critical Section problem
• Producer/Consumer problem
• Reader/Writer problem
• 5 Dining Philosophers
Why? Once you know the “generic” solutions, you

can recognize other special cases in which to
apply them (e.g., this is just a version of the
reader/writer problem)

47

Producer / Consumer
Producer:
while(whatever)
{ locally generate item

fill empty buffer with item

}

Consumer:
while(whatever)
{

get item from full buffer

use item
}

48

Producer / Consumer
(with Counting Semaphores*)

Producer:
while(whatever)
{ locally generate item

fill empty buffer with item

}

Consumer:
while(whatever)
{

get item from full buffer

use item
}

P(emptybuf);

V(fullbuf);

P(fullbuf);

V(emptybuf);

Semaphores: emptybuf initially N; fullbuf initially 0;
*not Linux syntax

49

What does it mean that Semaphores
have persistence?

Tweedledum and Tweedledee Problem

• Separate threads executing their respective
procedures. The code below is intended to
cause them to forever take turns exchanging
insults through the shared variable X in strict
alternation.

• The Sleep() and Wakeup() routines operate
as follows:
– Sleep blocks the calling thread,
– Wakeup unblocks a specific thread if that thread

is blocked, otherwise its behavior is unpredictable
• Linux: wait_for_completion() and complete()

50

The code shown above exhibits a well-known
synchronization flaw. Outline a scenario in which this
code would fail, and the outcome of that scenario

void Tweedledum()
{
while(1) {

Sleep();
x = Quarrel(x);
Wakeup(Tweedledee);

}
}

void Tweedledee()
{
while(1) {

x = Quarrel(x);
Wakeup(Tweedledum);
Sleep();

}
}

Lost Wakeup:
If dee goes first to sleep, the wakeup is lost (since dum isn’t
sleeping yet). Both sleep forever.

51

Show how to fix the problem by replacing the Sleep and
Wakeup calls with semaphore P (down) and V (up)
operations.

void Tweedledum()
{
while(1) {

Sleep();
x = Quarrel(x);
Wakeup(Tweedledee);

}
}

void Tweedledee()
{
while(1) {

x = Quarrel(x);
Wakeup(Tweedledum);
Sleep();

}
}

P(dum);

V(dee);

semaphore dee = 0;
semaphore dum = 0;

V(dum);
P(dee):

52

5 Dining Philosophers

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Philosopher 4

while(food available)
{pick up 2 adj. forks;
eat;
put down forks;
think awhile;

}

53

Template for Philosopher
while (food available)
{ /*pick up forks*/

eat;
/*put down forks*/

think awhile;
}

54

Naive Solution
while (food available)
{ /*pick up forks*/

eat;
/*put down forks*/

think awhile;
}

P(fork[left(me)]);
P(fork[right(me)]);

V(fork[left(me)]);
V(fork[right(me)]);

Does this work?

55

Simplest Example of Deadlock
Thread 0

P(R1)
P(R2)
V(R1)
V(R2)

Thread 1

P(R2)
P(R1)
V(R2)
V(R1)

Interleaving

P(R1)
P(R2)
P(R1) waits
P(R2) waits

R1 and R2 initially 1 (binary semaphore)

56

Conditions for Deadlock
• Mutually exclusive use of resources

– Binary semaphores R1 and R2

• Circular waiting
– Thread 0 waits for Thread 1 to V(R2) and

Thread 1 waits for Thread 0 to V(R1)

• Hold and wait
– Holding either R1 or R2 while waiting on other

• No pre-emption
– Neither R1 nor R2 are removed from their respective holding

Threads.

57

Philosophy 101
(or why 5DP is interesting)

• How to eat with your Fellows without
causing Deadlock.
– Circular arguments (the circular wait condition)
– Not giving up on firmly held things (no

preemption)
– Infinite patience with Half-baked schemes

(hold some & wait for more)

• Why Starvation exists and what we can
do about it.

58

Dealing with Deadlock
It can be prevented by breaking one of

the prerequisite conditions:
• Mutually exclusive use of resources

– Example: Allowing shared access to read-only
files (readers/writers problem)

• circular waiting
– Example: Define an ordering on resources and

acquire them in order
• hold and wait
• no pre-emption

59

while (food available)
{ if (me == 0) {P(fork[left(me)]); P(fork[right(me)]);}

else {(P(fork[right(me)]); P(fork[left(me)]); }
eat;
V(fork[left(me)]); V(fork[right(me)]);

think awhile;
}

Circular Wait Condition

60

Hold and Wait Condition
while (food available)
{ P(mutex);

while (forks [me] != 2)
{blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);}

forks [leftneighbor(me)] --; forks [rightneighbor(me)]--;
V(mutex):
eat;
P(mutex); forks [leftneighbor(me)] ++; forks [rightneighbor(me)]++;
if (blocking[leftneighbor(me)]) {blocking [leftneighbor(me)] = false;
V(sleepy[leftneighbor(me)]); }
if (blocking[rightneighbor(me)]) {blocking[rightneighbor(me)] = false;
V(sleepy[rightneighbor(me)]); } V(mutex);
think awhile;

}

61

Starvation
The difference between deadlock and

starvation is subtle:
– Once a set of processes are deadlocked, there is

no future execution sequence that can get them
out of it.

– In starvation, there does exist some execution
sequence that is favorable to the starving process
although there is no guarantee it will ever occur.

– Rollback and Retry solutions are prone to
starvation.

– Continuous arrival of higher priority processes is
another common starvation situation.

62

Readers/Writers Problem
Synchronizing access to a file or data record

in a database such that any number of
threads requesting read-only access are
allowed but only one thread requesting
write access is allowed, excluding all
readers.

63

Template for Readers/Writers
Reader()
{while (true)

{

read

}
}

Writer()
{while (true)

{

write

}
}

/*request r access*/

/*release r access*/

/*request w access*/

/*release w access*/

64

Reader/Writer Spinlocks
• Class of reader/writer

problems
• Multiple readers OK
• Mutual exclusion for

writers
• No upgrade from reader

lock to writer lock
• Favors readers –

starvation of writers
possible

rwlock_t

read_lock,read_unlock

read_lock_irq // also unlock

read_lock_irqsave

read_unlock_irqrestore

write_lock,write_unlock
//_irq,_irqsave,_irqrestore

write_trylock

rw_is_locked

65

Reader/Writer Semaphores
• All reader / writer

semaphores are
mutexes (usage count 1)

• Multiple readers, solo
writer

• Uninterruptible sleep
• Possible to

downgrade writer to
reader

down_read

down_write

up_read

up_write

downgrade_writer

down_read_trylock

down_write_trylock

72

Birrell paper:
SRC Thread Primitives

• SRC thread primitives
– Thread = Fork (procedure, args)
– result = Join (thread)
– LOCK mutex DO critical section END
– Wait (mutex, condition)
– Signal (condition)
– Broadcast (condition)
– Acquire (mutex), Release (mutex) //more

dangerous

73

Monitor Abstraction
• Encapsulates shared

data and operations
with mutual exclusive
use of the object (an
associated lock).

• Associated Condition
Variables with
operations of Wait and
Signal.

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

74

Condition Variables
• We build the monitor abstraction out of a lock

(for the mutual exclusion) and a set of
associated condition variables.

• Wait on condition: releases lock held by
caller, caller goes to sleep on condition’s
queue.
When awakened, it must reacquire lock.

• Signal condition: wakes up one waiting
thread.

• Broadcast: wakes up all threads waiting on
this condition.

75

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

76

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

77

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

78

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

79

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

80

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
while (head == null)

wait (lock, notEmpty);
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

82

P&V using Locks & CV (Monitor)

lock

P V

init
shared data

en
try

 q
ue

ue

no
nZ

er
o

conditions

P: {acquire (lock);
while (Sval == 0)

wait (lock, nonZero);
Sval = Sval –1;
release(lock);}

V: {acquire (lock);
Sval = Sval + 1;
signal (lock, nonZero);
release(lock);}

Sval

83

Design Decisions / Issues

• Locking overhead (granularity)
• Broadcast vs. Signal
• Nested lock/condition variable problem

LOCK a DO
LOCK b DO

while (not_ready) wait (b, c) //releases b not a
END

END
• My advice – correctness first!

Unseen
in
call

84

Using Condition Variables
while (! required_conditions) wait (m, c);

• Why we use “while” not “if” – invariant not
guaranteed

• Why use broadcast vs. signal – can arise if we
are using one condition queue for many reasons.
Waking threads have to sort it out (spurious
wakeups). Possibly better to separate into
multiple conditions (but more complexity to code).

85

5DP - Monitor Style
Boolean eating [5];
Lock forkMutex;
Condition forksAvail;

void PickupForks (int i) {
forkMutex.Acquire();
while (eating[(i-1)%5]
|| || || || eating[(i+1)%5])

forksAvail.Wait(&forkMutex);
eating[i] = true;
forkMutex.Release();

}

void PutdownForks (int i) {
forkMutex.Acquire();
eating[i] = false;
forksAvail.Broadcast(&forkMute
x);
forkMutex.Release();

}

86

What about this?
while (food available)
{ forkMutex.Acquire();

while (forks [me] != 2) {blocking[me]=true;
forkMutex.Release(); sleep(); forkMutex.Acquire();}

forks [leftneighbor(me)]--; forks [rightneighbor(me)]--;
forkMutex.Release():

eat;
forkMutex.Acquire();

forks[leftneighbor(me)] ++; forks [rightneighbor(me)]++;
if (blocking[leftneighbor(me)] || blocking[rightneighbor(me)])

wakeup (); forkMutex.Release();
think awhile;

}

88

Template for Readers/Writers
Reader()
{while (true)

{

read

}
}

Writer()
{while (true)

{

write

}
}

startRead();

endRead();

startWrite();

endWrite();

89

R/W - Monitor StyleBoolean busy = false;
int numReaders = 0;
Lock filesMutex;
Condition OKtoWrite, OKtoRead;

void startRead () {
filesMutex.Acquire();
while (busy)

OKtoRead.Wait(&filesMutex);
numReaders++;
filesMutex.Release();}

void endRead () {
filesMutex.Acquire();
numReaders--;
if (numReaders == 0)

OKtoWrite.Signal(&filesMutex);
filesMutex.Release();}

void startWrite() {
filesMutex.Acquire();
while (busy || numReaders != 0)

OKtoWrite.Wait(&filesMutex);
busy = true;
filesMutex.Release();}

void endWrite() {
filesMutex.Acquire();
busy = false;
OKtoRead.Broadcast(&filesMutex);
OKtoWrite.Signal(&filesMutex);
filesMutex.Release();}

90

Issues
• Locking overhead (granularity)
• Broadcast vs. Signal and other causes of

spurious wakeups
• Nested lock/condition variable problem

LOCK a DO
LOCK b DO

while (not_ready) wait (b, c) //releases b not a
END

END
• Priority inversions

Unseen
in
call

91

Spurious Wakeups
while (! required_conditions) wait (m, c);

• Why we use “while” not “if” – invariant not
guaranteed

• Why use broadcast – using one condition
queue for many reasons. Waking threads
have to sort it out. Possibly better to
separate into multiple conditions (more
complexity to code)

92

Tricks (mixed syntax)

if (some_condition) // as a hint
{

LOCK m DO
if (some_condition) //the truth
{stuff}

END
}

Cheap to get info but must check for
correctness; always a slow way

93

More Tricks
General pattern:

while (! required_conditions) wait (m, c);
Broadcast works because waking up too many is

OK (correctness-wise) although a performance
impact.

LOCK m DO
…
deferred_signal = true;

END
if (deferred_signal) signal (c);

Spurious lock conflicts
caused by signals inside
critical section and
threads waking up to test
mutex before it gets
released.

94

Alerts
Thread state contains flag,

alert-pending

Exception alerted
Alert (thread)

alert-pending to true, wakeup a
waiting thread

AlertWait (mutex, condition)
if alert-pending set to false and

raise exception
else wait as usual

Boolean b = TestAlert()
tests and clear alert-pending

TRY
while (empty)

AlertWait (m,
nonempty); return
(nextchar());

EXCEPT
Thread.Alerted:

return (eof);

95

Using Alerts
sibling = Fork (proc, arg);
while (!done)
{ done = longComp();

if (done) Alert (sibling);
else done = TestAlert();

}

96

Wisdom
Do s
• Reserve using alerts for

when you don’t know what
is going on

• Only use if you forked the
thread

• Impose an ordering on
lock acquisition

• Write down invariants that
should be true when locks
aren’t being held

Don’t s
• Call into a different

abstraction level while
holding a lock

• Move the “last” signal
beyond scope of Lock

• Acquire lock, fork, and let
child release lock

• Expect priority inheritance
since few implementations

• Pack data and expect fine
grain locking to work

