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Outline for Today
• Objectives: 

– To introduce the critical section problem.
– To learn how to reason about the correctness 

of concurrent programs.
– To present Linux kernel synchronization

• Administrative details: 
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To capture naturally concurrent activities 
– Waiting for slow devices
– Providing human users faster response.
– Shared network servers multiplexing among client requests 

(each client served by its own server thread)

To gain speedup by exploiting parallelism in hardware
– Maintenance tasks performed “in the background”
– Multiprocessors
– Overlap the asynchronous and independent functioning of devices 

and users
Within a single user thread – signal handlers cause 

asynchronous control flow.

Reasons for Explicitly 
Programming with Threads

(User-level Perspective – Birrell)
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Concurrency from the
Kernel Perspective

• Kernel preemption – scheduler can preempt task 
executing in kernel.

• Interrupts occurring – asynchronously invoking 
handler that disrupts the execution flow.

• Sleeping to wait for events.
• Support for SMP multiprocessors – true 

concurrency of code executing on shared 
memory locations.
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The Trouble with Concurrency 
in Threads...

Thread0 Thread1

Data: x

while(i<10)
{x=x+1;

i++;}

0

while(j<10)
{x=x+1;

j++;}

0 0i j

What is the value of x when both threads
leave this while loop?
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Range of Answers
Process 0
LD x         // x currently 0

Add 1
ST x         // x now 1, stored over 9

Do 9 more full loops // leaving x at 10

Process1

LD x            // x currently 0
Add 1
ST x            // x now 1
Do 8 more full loops   // x = 9

LD x            // x now 1

Add 1
ST x           // x = 2 stored over 10

6

Reasoning about Concurrency
• What unit of work can be performed without 

interruption? Indivisible or atomic
operations.

• Interleavings - possible execution 
sequences of operations drawn from all 
threads.

• Race condition - final results depend on 
ordering and may not be “correct”.



The Trouble with Concurrency
• Two threads (T1,T2) in one address space or two processes in the

kernel
• One counter (shared)

ld r2, count
add r1, r2, r3
st count, r1

Shared Data
count

ld r2, count
add r1, r2, r3
st count, r1Ti

m
e

T1 T2 count
ld (count)
add
switch

ld (count)
add
st (count+1)

count+1
switch

st (count+1) count+1

Assumed
atomic

private

Desired: Atomic Sequence of Instructions

• Atomic Sequence
– Appears to execute to completion without any 

intervening operations

Ti
m

e

T1 T2 count
begin atomic
ld (count)
add
switch

begin atomic
st (count+1) count+1
end atomic
switch

ld (count+1)
add
st (count+2) count+2
end atomic

wait
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Unprotected Shared Data
void threadcode( )
{

int i;
long key;
for (i=0; i<20; i++){

key = rand();
SortedInsert (key);}

for (i=0; i<20; i++){
key = SortedRemove();
print (key); }

} What can happen here?

private

10 20 30 null

head
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Unprotected Shared Data

What can happen here?

20 30 null

head

• 2 concurrent 
SortedInserts with 
keys 5 and 7.

5

7

10
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Unprotected Shared Data

What can happen here?

20 30 null

head

• 2 concurrent 
SortedInserts with 
keys 5 and 7.

• 2 concurrent 
SortedRemoves 10

localptr

localptr
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Critical Sections
• If a sequence of non-atomic operations must be 

executed as if it were atomic in order to be correct, 
then we need to provide a way to constrain the 
possible interleavings 
– Critical sections are defined as code sequences that 

contribute to “bad” race conditions.
– Synchronization is needed around such critical sections.

• Mutual Exclusion - goal is to ensure that critical 
sections execute atomically w.r.t. related critical 
sections in other threads or processes.
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The Critical Section Problem
Each process follows this template:

while (1)
{ ...other stuff...   //processes in here shouldn’t stop others

enter_region( );
critical section
exit_region( );

}
The problem is to implement enter_region and 

exit_region to ensure mutual exclusion with some 
degree of fairness.

Problem with this definition:
It focuses on code 
not shared data 
that needs protecting!
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Temptation to Protect
Critical Sections 

(Badly)void threadcode( )
{

int i;
long key;
for (i=0; i<20; i++){

key = rand();

SortedInsert (key);

}
for (i=0; i<20; i++){

key = SortedRemove();

print (key); }
}

10 20 30 null

head

Acquire(insertmutex);

Release(insertmutex);

Acquire(removemutex);

Release(removemutex);

Focus on the data!
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Temptation to Protect
Critical Sections 

(Badly)void threadcode( )
{

int i;
long key;
for (i=0; i<20; i++){

key = rand();

SortedInsert (key);

}
for (i=0; i<20; i++){

key = SortedRemove();

print (key); }
}

10 20 30 null

head

Acquire(listmutex);

Release(listmutex);

Acquire(listmutex);

Release(listmutex);

Focus on the data!
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Yet Another Example

Problem: Given arrays C[0:x,0:y], A [0:x,0:y], 
and B [0:x,0:y]. Use n threads to update 
each element of C to the sum of A and B 
and then the last thread returns the 
average value of all C elements.
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• Static partitioning of arrays
for (i = lowi; i < highi; i++)

for (j = lowj; j < highj; j++)
{C[i,j] = A[i,j] + B[i,j];
privatesum = privatesum +    
C[i,j]; }

sum = sum + privatesum;

• Static partitioning of arrays
for (i = lowi; i < highi; i++)

for (j = lowj; j < highj; j++)
{C[i,j] = A[i,j] + B[i,j];

sum = sum + C[i,j]; }

Design Alternatives

sum
C

lowi = 0
highi = n/2-1
lowj = 0
highj = n/2-1

lowi = n/2
highi = n-1
lowj = 0
highj = n/2-1

lowi = 0
highi = n/2-1
lowj = n/2
highj = n-1

lowi = n/2
highi = n-1
lowj = n/2
highj = n-1
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• Dynamic partitioning of 
arrays
while (elements_remain(&i,&j))
{C[i,j] = A[i,j] + B[i,j];
sum = sum + C[i,j]; }

Design Alternatives

sum
C
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Implementation Options for 
Mutual Exclusion

• Disable Interrupts
• Use atomic operations (read-mod-write instr.) 
• Busywaiting solutions - spinlocks

– execute a tight loop if critical section is busy
– benefits from specialized atomic instructions

• Blocking synchronization
– sleep (enqueued on wait queue) while C.S. is busy

Synchronization primitives (abstractions, such as 
locks) which are provided by a system may be 
implemented with some combination of these 
techniques.
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The Critical Section Problem
while (1)
{ ...other stuff...

critical section – anything that touches a particular 
set of shared data

}

enter_region( );

exit_region( );
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Critical Data
• Goal in solving the critical section problem is to 

build synchronization so that the sequence of 
instructions that can cause a race condition are 
executed AS IF they were indivisible 
– “Other stuff” code that does not touch the critical data 

associated with a critical section can be interleaved 
with the critical section code.

– Code from a critical section involving data x can be 
interleaved with code from a critical section associated 
with data y.
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The Critical Section Problem
while (1)
{ ...other stuff...

critical section – anything that touches a particular 
set of shared data

}

local_irq_save(flags);

local_irq_restore(flags);

Overkill on UP
Insufficient for SMP
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Disabling Preemption
while (1)
{ ...other stuff...

critical section – per-processor data

}

preempt_disable();

preempt_enable();

Milder impact on UP
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Atomic Operations (Integer)
• Special data type atomic_t

– Prevent misuse and compiler optimizations
– Only 24 bit values (it’s SPARC’s fault)
– atomic_t u = ATOMIC_INIT (0);

• Selected operations (see p. 119)

o atomic_read
o atomic_set
o atomic_add
o atomic_inc

o atomic_sub_and_test
o atomic_add_negative
o atomic_inc_and_test
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Atomic Operations (Bitwise)
• No special data type – take pointer and bit 

number as arguments.  Bit 0 is least sign. bit.
• Selected operations

o set_bit
o clear_bit
o change_bit
o test_bit

o test_and_set_bit
o test_and_clear_bit
o test_and_change_bit
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Uses of Atomic Operations
static int x = 0;

threadcode()
{
int j = 0;
while(j<10)
//10 times per thread

{x=x+1;
j++;}

}

atomic_t x ATOMIC_INIT (0);

threadcode()
{
int j=0;
while(j<10)
//10 times per thread

{atomic_inc(&x);
j++;}

}
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Uses of Atomic Operations
static int x = 0; 
static int j = 11;

threadcode()
{
while((--j)!=0)
// 10 times in all

x=x+1;      
}

atomic_t x ATOMIC_INIT (0);
atomic_t j ATOMIC_INIT (11);

threadcode()
{
while(!atomic_dec_and_test(&j))
//10 times in all

atomic_inc(&x);
}
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Uses of Atomic Operations
while (1)
{ ...other stuff...

critical section – anything that touches a particular 
set of shared data

}

//homegrown spinlock
while(test_and_set_bit(0, &busy);

clear_bit(0, &busy );
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Linux Kernel Spinlocks

while (1)
{ ...other stuff...

critical section – anything that touches a particular 
set of shared data

}

//canned spinlock
spin_lock(&busy);

spin_unlock(&busy );

spinlock_t busy = SPIN_LOCK_UNLOCKED;
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Pros and Cons of Busywaiting
• Key characteristic - the “waiting” process is 

actively executing instructions in the CPU and 
using memory cycles.

• Appropriate when:
– High likelihood of finding the critical section 

unoccupied (don’t take context switch just to find that out) or 
estimated wait time is very short

– You have a processor all to yourself
– In interrupt context

• Disadvantages:
– Wastes resources (CPU, memory, bus bandwidth)
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Spinlock Subtleties
• Using spinlock in interrupt handlers – disable local 

interrupts before obtaining lock
• Saves (and restores) IRQ-enable state.

Disables while holding lock 
spin_lock_irqsave (&lockvar, flags)

spin_unlock_irqrestore (&lockvar, flags)

spin_lock_irq (&lockvar)

spin_unlock_irq(&lockvar)

• Disabling bottom halves
spin_lock_bh() and spin_unlock_bh()
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Pros and Cons of Blocking
• Sleeping processes/threads don’t consume 

CPU cycles
• Appropriate: when the cost of a system call 

is justified by expected waiting time
– High likelihood of contention for lock
– Long critical sections

• Disadvantage: context switch d overhead
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Semaphores
• Well-known synchronization abstraction
• Defined as a non-negative integer with two 

atomic operations
P(s) - [wait until s > 0; s--]   or down(s)
V(s) - [s++]                           or up(s)

34
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Semaphore Usage
• Binary semaphores can provide mutual 

exclusion – mutex (solution to critical 
section problem)

• Counting semaphores can represent a 
resource with multiple instances (e.g. 
solving producer/consumer problem)

• Signaling events (persistent events that 
stay relevant even if nobody listening right 
now)
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while (1)
{ ...other stuff...

critical section

}

The Critical Section Problem

down_interruptable(&mutex);

up(&mutex);

static DECLARE_SEMAPHORE_GENERIC(mutex,1)  or
static DECLARE_MUTEX(mutex)

Fill in the boxes

38

Lock Granularity – how much 
should one lock protect?

2 4 6 8

103

head tail

A B
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2 4 6 8

103

head tail

A B

Lock Granularity – how much 
should one lock protect?

Concurrency vs. overhead
Complexity threatens correctness
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Optimistic Locking – Seqlocks
• Sequence counter incremented on write
• Compare counter before and after a read
• Even counter value means data is stable
• Odd counter value means write in progress

Writes
write_seqlock(&lock);
// do write, lock is odd
write_sequnlock(&lock);
// write complete, 
// lock is even

Reads
do {

old=read_seqbegin(&lock);
//reading data

} 
while (read_seqretry(&lock, old));
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Peterson’s Algorithm 
for 2 Process Mutual Exclusion

• enter_region:
needin [me] = true;
turn = you;
while (needin [you] && turn == you) {no_op};             

• exit_region:
needin [me] = false;

Based on the assumption
of atomic ld/st operations
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Interleaving of Execution of 2 
Threads (blue and green)

enter_region:
needin [me] = true;
turn = you;
while (needin [you] && 

turn == you) {no_op};                   
Critical Section
exit_region:

needin [me] = false;

enter_region:
needin [me] = true;
turn = you;
while (needin [you] && 

turn == you) {no_op};          
Critical Section
exit_region:

needin [me] = false;
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needin [blue] = true;

needin [green] = true;
turn = green;

turn = blue;
while (needin [green] && turn == green) 

while (needin [blue] && turn == blue){no_op};

while (needin [blue] && turn == blue){no_op};

needin [blue] = false;

while (needin [blue] && turn == blue)

Critical Section

needin [green] = false;

Critical Section
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Peterson’s Algorithm 
for 2 Process Mutual Exclusion

• enter_region:
needin [me] = true;
turn = you;
while (needin [you] && turn == you) {no_op};             

• exit_region:
needin [me] = false;

mb();
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Barriers
• rmb – prevents loads being reordered across 

barrier
• wmb – prevents reordering stores 
• mb – both loads and stores
• read_barrier_depends – data-dependent loads
• SMP versions of above – compiles to barrier on 

UP
• barrier – prevents compiler optimizations from 

causing the reordering
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Classic Synchronization 
Problems

There are a number of “classic” problems that 
represent a class of synchronization situations

• Critical Section problem
• Producer/Consumer problem
• Reader/Writer problem
• 5 Dining Philosophers
Why?  Once you know the “generic” solutions, you 

can recognize other special cases in which to 
apply them (e.g., this is just a version of the 
reader/writer problem)
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Producer / Consumer
Producer:
while(whatever)
{ locally generate item

fill empty buffer with item

}

Consumer:
while(whatever)
{

get item from full buffer

use item
}
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Producer / Consumer
(with Counting Semaphores*)

Producer:
while(whatever)
{ locally generate item

fill empty buffer with item

}

Consumer:
while(whatever)
{

get item from full buffer

use item
}

P(emptybuf);

V(fullbuf);

P(fullbuf);

V(emptybuf);

Semaphores: emptybuf initially N; fullbuf initially 0;
*not Linux syntax
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What does it mean that Semaphores 
have persistence?

Tweedledum and Tweedledee Problem

• Separate threads executing their respective 
procedures. The code below is intended to 
cause them to forever take turns exchanging 
insults through the shared variable X in strict 
alternation. 

• The Sleep() and Wakeup() routines operate 
as follows: 
– Sleep blocks the calling thread, 
– Wakeup unblocks a specific thread if that thread 

is blocked, otherwise its behavior is unpredictable
• Linux: wait_for_completion() and complete()
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The code shown above exhibits a well-known 
synchronization flaw. Outline a scenario in which this 
code would fail, and the outcome of that scenario

void Tweedledum()
{
while(1) {

Sleep();
x = Quarrel(x);
Wakeup(Tweedledee); 

}
}

void Tweedledee()
{
while(1) {

x = Quarrel(x);                
Wakeup(Tweedledum);
Sleep();

}
}

Lost Wakeup:
If dee goes first to sleep, the wakeup is lost (since dum isn’t
sleeping yet).  Both sleep forever.
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Show how to fix the problem by replacing the Sleep and 
Wakeup calls with semaphore P (down) and V (up) 
operations.

void Tweedledum()
{
while(1) {

Sleep();
x = Quarrel(x);
Wakeup(Tweedledee); 

}
}

void Tweedledee()
{
while(1) {

x = Quarrel(x);                   
Wakeup(Tweedledum);
Sleep();

}
}

P(dum);

V(dee);

semaphore dee = 0;
semaphore dum = 0;

V(dum);
P(dee):

52

5 Dining Philosophers

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Philosopher 4

while(food available)
{pick up 2 adj. forks;
eat;
put down forks;
think awhile;

}
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Template for Philosopher
while (food available)
{ /*pick up forks*/

eat;
/*put down forks*/

think awhile;
}
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Naive Solution
while (food available)
{ /*pick up forks*/

eat;
/*put down forks*/

think awhile;
}

P(fork[left(me)]);
P(fork[right(me)]);

V(fork[left(me)]);
V(fork[right(me)]);

Does this work?



55

Simplest Example of Deadlock
Thread 0

P(R1)
P(R2)
V(R1)
V(R2)

Thread 1

P(R2)
P(R1)
V(R2)
V(R1)

Interleaving

P(R1)
P(R2)
P(R1) waits
P(R2) waits

R1 and R2 initially 1 (binary semaphore)
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Conditions for Deadlock
• Mutually exclusive use of resources

– Binary semaphores R1 and R2

• Circular waiting
– Thread 0 waits for Thread 1 to V(R2) and 

Thread 1 waits for Thread 0 to V(R1)

• Hold and wait 
– Holding either R1 or R2 while waiting on other 

• No pre-emption
– Neither R1 nor R2 are removed from their respective holding 

Threads.
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Philosophy 101
(or why 5DP is interesting)

• How to eat with your Fellows without 
causing Deadlock.
– Circular arguments (the circular wait condition)
– Not giving up on firmly held things (no 

preemption)
– Infinite patience with Half-baked schemes 

(hold some & wait for more)

• Why Starvation exists and what we can 
do about it.
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Dealing with Deadlock
It can be prevented by breaking one of 

the prerequisite conditions:
• Mutually exclusive use of resources

– Example: Allowing shared access to read-only 
files (readers/writers problem)

• circular waiting
– Example: Define an ordering on resources and 

acquire them in order 
• hold and wait  
• no pre-emption
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while (food available)
{ if (me == 0) {P(fork[left(me)]); P(fork[right(me)]);}

else {(P(fork[right(me)]); P(fork[left(me)]); }
eat;
V(fork[left(me)]); V(fork[right(me)]); 

think awhile;
}

Circular Wait Condition
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Hold and Wait Condition
while (food available)
{ P(mutex);

while (forks [me] != 2) 
{blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);}

forks [leftneighbor(me)] --;  forks [rightneighbor(me)]--;
V(mutex):
eat;
P(mutex); forks [leftneighbor(me)] ++;  forks [rightneighbor(me)]++;
if (blocking[leftneighbor(me)]) {blocking [leftneighbor(me)] = false; 
V(sleepy[leftneighbor(me)]); }
if (blocking[rightneighbor(me)]) {blocking[rightneighbor(me)] = false; 
V(sleepy[rightneighbor(me)]); }     V(mutex); 
think awhile; 

}
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Starvation
The difference between deadlock and 

starvation is subtle:
– Once a set of processes are deadlocked, there is 

no future execution sequence that can get them 
out of it.

– In starvation, there does exist some execution 
sequence that is favorable to the starving process 
although there is no guarantee it will ever occur.

– Rollback and Retry solutions are prone to 
starvation.

– Continuous arrival of higher priority processes is 
another common starvation situation.
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Readers/Writers Problem
Synchronizing access to a file or data record 

in a database such that any number of 
threads requesting read-only access are 
allowed but only one thread requesting 
write access is allowed, excluding all 
readers.
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Template for Readers/Writers
Reader()
{while (true)

{

read

}
}

Writer()
{while (true)

{

write

}
}

/*request r access*/

/*release r access*/

/*request w access*/

/*release w access*/

64

Reader/Writer Spinlocks
• Class of reader/writer 

problems
• Multiple readers OK
• Mutual exclusion for 

writers
• No upgrade from reader 

lock to writer lock
• Favors readers –

starvation of writers 
possible

rwlock_t

read_lock,read_unlock

read_lock_irq // also unlock

read_lock_irqsave 

read_unlock_irqrestore

write_lock,write_unlock
//_irq,_irqsave,_irqrestore

write_trylock

rw_is_locked
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Reader/Writer Semaphores
• All reader / writer 

semaphores are 
mutexes (usage count 1)

• Multiple readers, solo 
writer

• Uninterruptible sleep
• Possible to 

downgrade writer to 
reader

down_read

down_write

up_read

up_write

downgrade_writer

down_read_trylock

down_write_trylock
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Birrell paper: 
SRC Thread Primitives

• SRC thread primitives
– Thread = Fork (procedure, args)
– result = Join (thread)
– LOCK mutex DO critical section END
– Wait (mutex, condition)
– Signal (condition)
– Broadcast (condition)
– Acquire (mutex), Release (mutex) //more 

dangerous
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Monitor Abstraction
• Encapsulates shared 

data and operations 
with mutual exclusive 
use of the object (an 
associated lock).

• Associated Condition 
Variables with 
operations of Wait and 
Signal.

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions
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Condition Variables
• We build the monitor abstraction out of a lock 

(for the mutual exclusion) and a set of 
associated condition variables.

• Wait on condition: releases lock held by 
caller, caller goes to sleep on condition’s 
queue.  
When awakened, it must reacquire lock.

• Signal condition: wakes up one waiting 
thread.

• Broadcast: wakes up all threads waiting on 
this condition.
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Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}
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Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}
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Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}
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Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}
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Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}
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Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
while (head == null)

wait (lock, notEmpty);
item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}
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P&V using Locks & CV (Monitor)

lock

P V

init
shared data

en
try

 q
ue

ue

no
nZ

er
o

conditions

P: {acquire (lock);
while (Sval == 0)

wait (lock, nonZero); 
Sval = Sval –1;
release(lock);}

V: {acquire (lock);
Sval = Sval + 1;
signal (lock, nonZero);
release(lock);}

Sval
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Design Decisions / Issues

• Locking overhead (granularity)
• Broadcast vs. Signal 
• Nested lock/condition variable problem

LOCK a DO
LOCK b DO

while (not_ready) wait (b, c) //releases b not a
END

END
• My advice – correctness first!

Unseen
in 
call
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Using Condition Variables
while (! required_conditions)  wait (m, c);

• Why we use “while” not “if” – invariant not 
guaranteed

• Why use broadcast vs. signal – can arise if we 
are using one condition queue for many reasons.  
Waking threads have to sort it out (spurious 
wakeups).  Possibly better to separate into 
multiple conditions (but more complexity to code).
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5DP - Monitor Style
Boolean eating [5];
Lock forkMutex;
Condition forksAvail;

void PickupForks (int i) {
forkMutex.Acquire( );
while ( eating[(i-1)%5] 
|| || || || eating[(i+1)%5] )

forksAvail.Wait(&forkMutex);
eating[i] = true;
forkMutex.Release( );

}

void PutdownForks (int i) {
forkMutex.Acquire( );
eating[i] = false;
forksAvail.Broadcast(&forkMute
x);
forkMutex.Release( );

}
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What about this?
while (food available)
{ forkMutex.Acquire( );

while (forks [me] != 2) {blocking[me]=true;
forkMutex.Release( ); sleep( ); forkMutex.Acquire( );}

forks [leftneighbor(me)]--;  forks [rightneighbor(me)]--;
forkMutex.Release( ):

eat;
forkMutex.Acquire( );

forks[leftneighbor(me)] ++;  forks [rightneighbor(me)]++;
if (blocking[leftneighbor(me)] || blocking[rightneighbor(me)])

wakeup ( ); forkMutex.Release( );
think awhile;

}
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Template for Readers/Writers
Reader()
{while (true)

{

read

}
}

Writer()
{while (true)

{

write

}
}

startRead();

endRead();

startWrite();

endWrite();
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R/W - Monitor StyleBoolean busy = false;
int numReaders = 0;
Lock filesMutex;
Condition OKtoWrite, OKtoRead;

void startRead () {
filesMutex.Acquire( );
while ( busy )

OKtoRead.Wait(&filesMutex);
numReaders++;
filesMutex.Release( );}

void endRead () {
filesMutex.Acquire( );
numReaders--;
if (numReaders == 0)

OKtoWrite.Signal(&filesMutex);
filesMutex.Release( );}

void startWrite() {
filesMutex.Acquire( );
while (busy || numReaders != 0)

OKtoWrite.Wait(&filesMutex);
busy = true;
filesMutex.Release( );}

void endWrite() {
filesMutex.Acquire( );
busy = false;
OKtoRead.Broadcast(&filesMutex);
OKtoWrite.Signal(&filesMutex);
filesMutex.Release( );}
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Issues
• Locking overhead (granularity)
• Broadcast vs. Signal and other causes of 

spurious wakeups
• Nested lock/condition variable problem

LOCK a DO
LOCK b DO

while (not_ready) wait (b, c) //releases b not a
END

END
• Priority inversions

Unseen
in 
call
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Spurious Wakeups
while (! required_conditions)  wait (m, c);

• Why we use “while” not “if” – invariant not 
guaranteed

• Why use broadcast – using one condition 
queue for many reasons.  Waking threads 
have to sort it out.  Possibly better to 
separate into multiple conditions (more 
complexity to code)
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Tricks (mixed syntax)

if (some_condition) // as a hint
{

LOCK m DO
if (some_condition) //the truth
{stuff}

END
}

Cheap to get info but must check for 
correctness; always a slow way
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More Tricks
General pattern:

while (! required_conditions)  wait (m, c);
Broadcast works because waking up too many is 

OK (correctness-wise) although a performance 
impact.

LOCK m DO
…
deferred_signal = true;

END
if (deferred_signal) signal (c);

Spurious lock conflicts
caused by signals inside
critical section and 
threads waking up to test
mutex before it gets
released.
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Alerts
Thread state contains flag, 

alert-pending

Exception alerted
Alert (thread)

alert-pending to true, wakeup a 
waiting thread

AlertWait (mutex, condition)
if alert-pending set to false and 

raise exception
else wait as usual

Boolean b = TestAlert()
tests and clear alert-pending

TRY
while (empty)

AlertWait (m, 
nonempty); return 
(nextchar());

EXCEPT
Thread.Alerted:  

return (eof);
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Using Alerts
sibling = Fork (proc, arg);
while (!done)
{ done = longComp();

if (done) Alert (sibling);
else done = TestAlert();

}
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Wisdom
Do s
• Reserve using alerts for 

when you don’t know what 
is going on

• Only use if you forked the 
thread

• Impose an ordering on 
lock acquisition

• Write down invariants that 
should be true when locks 
aren’t being held

Don’t s
• Call into a different 

abstraction level while 
holding a lock

• Move the “last” signal 
beyond scope of Lock

• Acquire lock, fork, and let 
child release lock

• Expect priority inheritance 
since few implementations

• Pack data and expect fine 
grain locking to work


