
Outline for today

• Objective:
– Background on deadlock
– Pulse

• Speculative execution
• Virtual Machines and Xen

• Administrative:
– Make teams for programming projects

Background on Deadlock

Dealing with Deadlock
It can be prevented by breaking one of the

prerequisite conditions (review):
– Mutually exclusive use of resources

• Example: Allowing shared access to read-only files
(readers/writers problem from readers point of view)

– circular waiting
• Example: Define an ordering on resources and acquire

them in order (lower numbered fork first)
– hold and wait
– no pre-emption

Dealing with Deadlock (cont.)

Let it happen, then detect it and recover
– via externally-imposed preemption of

resources
Avoid dynamically by monitoring

resource requests and denying some.
– Banker’s Algorithm ...

Deadlock Theory
State of resource allocation

captured in
Resource Graph

– Bipartite graph model with a
set P of vertices representing
processes and a set R for
resources.

– Directed edges
• Ri −> Pj means Ri alloc to Pj

• Pj −> Ri means Pj requests Ri

– Resource vertices contain
units of the resource

Resource
R0

Resource
R1

Process P0

Process P1

Request
Arc

Alloc Arc

Reusable Resources

Deadlock Theory
State transitions by

operations:
– Granting a request
– Making a new request if all

outstanding requests satisfied

Deadlock defined on
graph:
– Pi is blocked in state S if

there is no operation Pi can
perform

– Pi is deadlocked if it is
blocked in all reachable states
from S

– S is safe if no reachable state
is a deadlock state (i.e.,
having some deadlocked

Resource
R0

Resource
R1

Process P0

Process P1

Request
Arc

Alloc Arc

Deadlock Theory
• Cycle in graph is a

necessary condition
– no cycle −> no deadlock.

• No deadlock iff graph is
completely reducible
– Intuition: Analyze graph,

asking if deadlock is
inevitable from this state
by simulating most
favorable state
transitions.

R0 R1

P0

P1

Request
Arc

Alloc Arc

P3

Deadlock Detection Algorithm
Let U be the set of processes that have

yet to be reduced. Initially U = P.
Consider only reusable resources.

while (there exist unblocked processes in U)
{ Remove unblocked Pi from U;

Cancel Pi’s outstanding requests;
Release Pi’s allocated resources;
/* possibly unblocking other Pk in U */}

if (U != λ) signal deadlock;

Deadlock Detection Example

P0
R0

R2

R3

R4

R1

P3 P4

P2P1

Deadlock Detection Example

P0
R0

R2

R3

R4

R1

P3 P4

P2P1

Deadlock Detection Example

R0

R2

R3

R4

R1

P3 P4

P2

P0

Deadlock Detection Example

R0

R2

R3

R4

R1

P3 P4

P2

P0

Deadlock Detection Example

R0

R2

R3

R4

R1

P4

P2

P0

Deadlock Detection Example

P0
R0

R2

R3

R4

R1

P4

P2

Deadlock Detection Example

P0
R0

R2

R3

R4

R1

P4

Deadlock Detection Example

P0
R0

R2

R3

R4

R1

P4

Deadlock Detection Example

P0
R0

R2

R3

R4

R1

Deadlock Detection Example

R0

R2

R3

R4

R1

Completely Reducible

Another Example

R0 R1

P0

P1

Request
Arc

Alloc Arc

P2
With and without P2

Another Example

R0 R1

P0

P1

Request
Arc

Alloc Arc

With and without P2

Is there an unblocked
process to start with?

Another Example

R0 R1

P0

P1

Request
Arc

Alloc Arc

With and without P2

Another Example

R0 R1

P0

P1

Request
Arc

Alloc Arc

With and without P2

Another Example

R0 R1

P0

P1

Request
Arc

Alloc Arc

With and without P2

Another Example

R0 R1

P0

P1

Request
Arc

Alloc Arc

P2
With and without P2

Is there an unblocked
process to start with?

Consumable Resources

• Not a fixed number of
units, operations of
producing and
consuming (e.g.
messages)

• Ordering matters on
applying reductions
– Reducing by producer

makes “enough” units,
ω

P0

P1

P2

Producer
Arc

Producer
Arc

R0

R1

Consumable Resources

• Not a fixed number of
units, operations of
producing and consuming
(e.g. messages)

• Ordering matters on
applying reductions
– Reducing by producer

makes “enough” units, ω
– Start with P2

P0

P1

P2

Producer
Arc

Producer
Arc

R0

R1

Consumable Resources

• Not a fixed number of
units, operations of
producing and consuming
(e.g. messages)

• Ordering matters on
applying reductions
– Reducing by producer

makes “enough” units, ω
– Start with P2

P0

P1

P2

Producer
Arc

Producer
Arc

R0

R1Not reducible

Consumable Resources

• Not a fixed number of
units, operations of
producing and consuming
(e.g. messages)

• Ordering matters on
applying reductions
– Reducing by producer

makes “enough” units, ω
– Start with P2

P0

P1

P2

Producer
Arc

Producer
Arc

R0

R1

Consumable Resources

• Not a fixed number of
units, operations of
producing and consuming
(e.g. messages)

• Ordering matters on
applying reductions
– Reducing by producer

makes “enough” units, ω
– Start with P2

– Start with P1

P0

P1

P2

Producer
Arc

Producer
Arc

R0

R1

Consumable Resources

• Not a fixed number of
units, operations of
producing and consuming
(e.g. messages)

• Ordering matters on
applying reductions
– Reducing by producer

makes “enough” units, ω
– Start with P1

P0

P1

P2

Producer
Arc

Producer
Arc

R0

R1

ω

Consumable Resources

• Not a fixed number of
units, operations of
producing and consuming
(e.g. messages)

• Ordering matters on
applying reductions
– Reducing by producer

makes “enough” units, ω
– Start with P1

P0

P1

P2

Producer
Arc

Producer
Arc

R0

R1

ω

ω

Consumable Resources

• Not a fixed number of
units, operations of
producing and consuming
(e.g. messages)

• Ordering matters on
applying reductions
– Reducing by producer

makes “enough” units, ω
– Start with P1

P0

P1

P2

Producer
Arc

Producer
Arc

R0

R1Reducible

Deadlock Detection & Recovery

• Continuous monitoring and running this
algorithm are expensive.

• What to do when a deadlock is detected?
– Abort deadlocked processes (will result in

restarts).
– Preempt resources from selected processes,

rolling back the victims to a previous state
(undoing effects of work that has been done)

– Watch out for starvation.

Pulse

Goal

• To increase the kinds of deadlocks that
can be detected dynamically

• Uses high-level speculative execution to
go forward to discover dependencies

Overview of Pulse

• Kernel daemon
process

• Presence of long-
sleeping processes
trigger detection

• Detection mode
– Identify processes and

events awaited
– Fork speculative

processes to see what
events they generate
in the future

Creating General Resource
Graph with Consumable

Resources

Details of Graph Construction
• Process and Event nodes

– Those processes blocked a long time.
– Events – all blocking system calls modified to

record the events for which caller waits
(resource, condition <op, val>)

• Edges
– Request edges generated with event nodes.
– Producer edges result from speculation

• Recorded in event buffer until speculative processes
terminate (normally, full buffer, timeout)

• Modifying all system calls that unblock the blocking ones

• Cycle detection on finished graph

Safe Speculation
• Must not modify state of any other process

– Fork with copy-on-write enabled
– Can not change shared kernel data structures
– Can not write to files
– Can not send signals to another process

• Pretend properly that we get unblocked
ourselves
– Not really reading input data if that’s what we were

waiting for (so data dependent branches won’t be
“right”)

– Must pretend that conditions true (in case of while
loop in application code)

Tricks of Forking Blocked
Processes

• New process is
forced to run
ret_from_spec_fork

• Fake the awaited
event

• syscall_exit with
success

5 Dining
Philosophers

Smoker’s Problem

Suppose agent releases tobacco and matches

Apache Bug

Limitations

• False positives
– Since everything appears as consumable

resources, Pulse could find more than one
producer edge (and extra cycles)

– Since more than single unit resources – a
cycle is really just necessary not sufficient

• False negatives
– Self-breaking mechanisms
– Events that never occur (no unlocks)

Extensions

• Spinning synchronization – we just need
to identify spinning as form of blocking
by the system – instrument calls

• Kernel deadlocks – use virtual machine
to speculatively execute a kernel
instance.

Intro to Virtual Machines

Traditional Multiprogrammed OS

• Multiple applications
running with the
abstraction of dedicated
machine provided by
OS

• Pass through of non-
privileged instructions

• ISA – instruction set
architecture

• ABI – application binary
interface

HW

OS

Application(s)

ISA

ABI Syscalls

instr

©James Smith, U.Wisc

Virtualization Layer

©James Smith, U.Wisc

Virtual Machines
• History: invented by IBM in

1960’s
• Fully protected and isolated

copy of the physical
machine providing the
abstraction of a dedicated
machine

• Layer: Virtual Machine
Monitor (VMM)

• Replicating machine for
multiple OSs

• Security Isolation

©James Smith, U.Wisc

Virtual Machine Monitor

©J. Sugarman, USENIX01

Issues

• Hardware must be fully virtualizable –
all sensitive (privileged) instructions
must trap to VMM
– X86 is not fully virtualizable

• In traditional model, all devices need
drivers in VMM
– PCs have lots of possible devices –

leverage the host OS for its drivers =>
hosted model

Xen

Paravirtualization

• A virtual machine that is not identical to
real hardware

• Does not require changes to application
interface (support unmodified user
code).

• Does require source modifications to
kernel – XenoLinux.

Structure

Privilege
ring 0

Privilege
ring 1

Privilege
ring 3

Structure

hypercalls

events

