
Eraser: A dynamic data race 
detector for multithreaded 

programs

S. Savage, M. Burrows, 
G. Nelson, P. Sobalvarro, and 

T. Anderson
TOCS Nov. 97



Overview

• Dynamic data race detection tool – testing 
paradigm instead of static analysis.

• Checks that each shared memory access follows 
a consistent locking discipline

• Data race – when 2 concurrent threads access a 
shared variable and at least one is a write and 
the threads use no explicit synchronization to 
prevent simultaneous access.
– Effect will depend on interleaving



Previous Approaches:
Lamport’s Happened-Before

Previous work
• If 2 threads access 

a shared variable 
and the accesses 
are not ordered by 
happens-before
then potential race.

lock(mutex)

v = v+1;

unlock(mutex)
lock(mutex)

v = v+1;

unlock(mutex)



Drawbacks of Happened-Before

• Difficult to implement efficiently –
need per-thread information about access 
ordering to all shared memory locations.

• Highly dependent on scheduler – needs 
large number of test cases.



Previous work
• If 2 threads access 

a shared variable 
and the accesses 
are not ordered by 
happens-before
then potential race.

• Depends on 
scheduler

y=y+1;
lock(mutex)

v = v+1;

unlock(mutex)
lock(mutex)

v = v+1;

unlock(mutex)
y=y+1;



Previous work
• If 2 threads access 

a shared variable 
and the accesses 
are not ordered by 
happens-before
then potential race.

• Depends on 
scheduler

y=y+1;
lock(mutex)

v = v+1;

unlock(mutex)

lock(mutex)

v = v+1;

unlock(mutex)
y=y+1;



Idea in Eraser

• Checks that locking discipline is observed.
– That the same lock(s) is held whenever the 

shared data object is accessed.
– Infer which locks protect which data items



Lockset Algorithm
• C(v) – candidate locks 

for v
• locks-held(t) – set of 

locks held by thread t
• Lock refinement

for each v, init C(v) to 
set of all locks

On each access to v by 
thread t:
C(v) = C(v) 3 locks-

held(t)
If C(v) = {} issue warning 



Example

lock(mu1)
v=v+1
unlock(mu1)

lock(mu2)
v=v+1
unlock(mu2)

locks-held C(v)
{} {mu1, mu2}
{mu1}

{mu1}

{}

{mu2}
{}

{}



More Sophistication
• Initialization without 

locks
• Read-shared data

(written only during init,
read-only afterwards)

• Reader-writer locking
(multiple readers)

!Don’t start until see a 
second thread

!Report only after it 
becomes write shared

!Change algorithm to 
reflect lock types
" On read of v by t:

C(v) = C(v) 3 locks-held(t)
" On write of v by t:

C(v) = C(v) 3 write-locks-held(t)• False Alarms still 
possible



Per-Location State

virgin

exclusive

shared

Shared
modified

wr, 1st thread

rd, wr, 
1st thread

wr, new thread

rd, new thread
wr

C(v) updated, 
no race reporting

C(v) updated, 
races reported



Implementation
• Binary rewriting used

– Add instrumentation to call Eraser runtime
– Each load and store updates C(v)
– Each Acquire and Release call updates 

locks-held(t)
– Calls to storage allocator initializes C(v)

• Storage explosion handled by table lookup and 
use of indexes to represent sets
– Shadow word holds index number

• Slowdown by factor of 10 to 30x
– Will change interleavings



Shadow Memory and Lockset Indexes



Common False Alarms -
Annotations

• Memory reuse

• Private locks
• Benign races

if (some_condition) {
LOCK m DO

if (some_condition) 
{stuff}

END
}

!EraseReuse – resets 
shadow word to virgin 
state

! Lock annotations
!EraserIgnoreOn()

EraserIgnoreOff()



Races inside OS
• Using interrupt system to provide mutual 

exclusion – this implicitly locks everything 
affected (by interrupt level specified)
– Explicitly associate a lock with interrupt level –

disabling interrupt is like acquiring that lock
• Signal and wait kind of synchronization

– V to signal for P which waits -- semaphore not 
“held” by thread.



An OK Race in AltaVista



Bad Race in Vesta



Core Loop of Lock-Coupling

// ptr−>lock.Acquire(); has been done before loop

while (next != null & key > next->data) 
{next−>lock.Acquire(); 
ptr−>lock.Release(); 
ptr=next; 
next=ptr−>next;

}

2 4 6 8 null

ptr next


