
Outline for Today

• Objective
– Review of basic file system material

• Administrative
– ??



Review of
File System Issues

• What is the role of files?  
What is the file abstraction?

• File naming.  How to find the file we want?
Sharing files.  Controlling access to files.

• Performance issues - how to deal with the 
bottleneck of disks? 
What is the “right” way to optimize file 
access?



Role of Files

• Persistance − long-lived − data for posterity
! non-volitile storage media
! semantically meaningful (memorable) names



Abstractions
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Functions of File System
• (Directory subsystem) Map filenames to fileids-open 

(create) syscall. Create kernel data structures.
Maintain naming structure (unlink, mkdir, rmdir)

• Determine layout of files and metadata on disk in 
terms of blocks.  Disk block allocation. Bad blocks.

• Handle read and write system calls
• Initiate I/O operations for movement of blocks 

to/from disk.
• Maintain buffer cache



Functions of Device Subsystem

In general, deal with device characteristics
• Translate block numbers (the abstraction of 

device shown to file system) to physical 
disk addresses. 
Device specific (subject to change with 
upgrades in technology) intelligent placement 
of blocks. 

• Schedule (reorder?) disk operations



VFS: the Filesystem Switch

syscall layer (file, uio, etc.)
user space

Virtual File System (VFS)network
protocol

stack
(TCP/IP) NFS FFS LFS ext2.*FS xfs.

device drivers

Sun Microsystems introduced the virtual file system framework 
in 1985 to accommodate the Network File System cleanly.

• VFS allows diverse specific file systems to coexist in a file tree, 
isolating all FS-dependencies in pluggable filesystem modules.

VFS was an internal kernel restructuring
with no effect on the syscall interface.

Incorporates object-oriented concepts:
a generic procedural interface with
multiple implementations.

Based on abstract objects with dynamic
method binding by type...in C.Other abstract interfaces in the kernel: device drivers,

file objects, executable files, memory objects.



Vnodes*
In the VFS framework, every file or directory in active use is 

represented by a vnode object in kernel memory.

syscall layer

NFS UFS

free vnodes

Active vnodes are reference-
counted by the structures that
hold pointers to them, e.g.,
the system open file table.

Each vnode has a standard
file attributes struct.

Vnode operations are
macros that vector to
filesystem-specific
procedures. 

Generic vnode points at
filesystem-specific struct
(e.g., inode, rnode), seen
only by the filesystem. 

Each specific file system 
maintains a hash of its 
resident vnodes.

*inode object in Linux VFS



Network File System (NFS)

syscall layer

UFS

NFS
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File Abstractions
• UNIX-like files

– Sequence of bytes
– Operations: open (create), close, read, write, seek

• Memory mapped files
– Sequence of bytes 
– Mapped into address space
– Page fault mechanism does data transfer

• Named, Possibly typed

syscall layer (file, uio, etc.)
user space

Virtual File System (VFS)network
protocol

stack
(TCP/IP) NFS FFS LFS ext2.*FS xfs.

device drivers



Memory Mapped Files
fd = open (somefile, consistent_mode);
pa = mmap(addr, len, prot, flags, fd, offset);

VAS

len

len

pa

fd + offset
R, W, X,
none

Shared,
Private,
Fixed,
Noreserve

Reading performed by Load instr.



UNIX File System Calls

char buf[BUFSIZE];
int fd;

if ((fd = open(“../zot”, O_TRUNC | O_RDWR) == -1) {
perror(“open failed”);
exit(1);

}
while(read(0, buf, BUFSIZE)) {

if (write(fd, buf, BUFSIZE) != BUFSIZE) {
perror(“write failed”);
exit(1);

}
}

Pathnames may be 
relative to process 
current directory.

Process does not specify 
current file offset: the 
system remembers it.

Process passes status back 
to parent on exit, to report 
success/failure.

Open files are named to 
by an integer file 
descriptor.

Standard descriptors (0, 1, 2) 
for input, output, error 
messages (stdin, stdout, 
stderr).



File Sharing Between 
Parent/Child (UNIX)

main(int argc, char *argv[]) {
char c;
int fdrd, fdwt;

if ((fdrd = open(argv[1], O_RDONLY)) == -1)
exit(1);

if ((fdwt = creat([argv[2], 0666)) == -1)
exit(1);

fork(); 

for (;;) {
if (read(fdrd, &c, 1) != 1)

exit(0);
write(fdwt, &c, 1);

}
} [Bach]



Sharing Open File Instances

shared seek 
offset in shared 
file table entry

system open 
file table
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process ID

process group ID
parent PID
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siblings
children
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process ID
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parent PID
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Corresponding Linux File Objects

system open 
file table

user ID
process ID

process group ID
parent PID
signal state
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children

user ID
process ID
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Goals of File Naming
• Foremost function - to find files, 

Map file name to file object.
• To store meta-data about files.
• To allow users to choose their own file names 

without undue name conflict problems.
• To allow sharing.
• Convenience: short names, groupings.
• To avoid implementation complications



Meta-Data

• File size
• File type
• Protection - access 

control information
• History: 

creation time, 
last modification,
last access.

• Location of file -
which device

• Location of individual 
blocks of the file on 
disk.

• Owner of file
• Group(s) of users 

associated with file



Operations on Directories (UNIX)

• Link - make entry pointing to file
• Unlink - remove entry pointing to file
• Rename
• Mkdir - create a directory
• Rmdir - remove a directory



Naming Structures
Naming Hierarchy
• Component names - pathnames

– Absolute pathnames - from a designated root
– Relative pathnames - from a working directory
– Each name carries how to resolve it.
– No cycles – allows reference counting to reclaim 

deleted nodes. 
• Links

– Short names to files anywhere for convenience in 
naming things – symbolic links – map to pathname



Links

usr

Lynn Marty

ln /usr/Lynn/foo barunlink foo
foo

creat foo

ln -s /usr/Marty/bar bar

unlink bar

creat bar

bar



A Typical Unix File Tree

/

tmp usretc

File trees are built by grafting
volumes from different devices
or from network servers.

Each volume is a set of directories and files; a host’s file tree is the set of
directories and files visible to processes on a given host.

bin vmunix

ls sh project users

packages

(coverdir)

In Unix, the graft operation is
the privileged mount system call,
and each volume is a filesystem.

mount point
mount (coveredDir, volume)

coveredDir: directory pathname
volume: device specifier or network volume

volume root contents become visible at pathname coveredDir



A Typical Unix File Tree

/

tmp usretc

File trees are built by grafting
volumes from different devices
or from network servers.

Each volume is a set of directories and files; a host’s file tree is the set of
directories and files visible to processes on a given host.

bin vmunix

ls sh project users

packages

(volume root)

tex emacs

In Unix, the graft operation is
the privileged mount system call,
and each volume is a filesystem.

mount point
mount (coveredDir, volume)

coveredDir: directory pathname
volume: device specifier or network volume

volume root contents become visible at pathname coveredDir

/usr/project/packages/coverdir/tex



Access Control for Files

• Access control lists - detailed list attached 
to file of users allowed (denied) access, 
including kind of access allowed/denied.

• UNIX RWX - owner, group, everyone



Implementation Issues:
UNIX Inodes
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Pathname Resolution

inode#spr04

Directory node
File
Attributes

inode#Proj

Directory node File
Attributes

cps210 spr04

inode#proj1

Directory node
Proj

File
Attributes

proj1proj1
data filedata file

Surprisingly,
most lookups 
are multi-
component 
(in fact, most
are Absolute).



Linux dcache
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File Structure Alternatives

• Contiguous
– 1 block pointer, causes fragmentation, growth is a 

problem.

• Linked
– each block points to next block, directory points to first, 

OK for sequential access

• Indexed
– index structure required, better for random access into 

file.



File Allocation Table (FAT)
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Finally Arrive at File

• What do users seem to want from the file 
abstraction?

• What do these usage patterns mean for file 
structure and implementation decisions?
– What operations should be optimized 1st?
– How should files be structured?
– Is there temporal locality in file usage?
– How long do files really live?



Know your Workload!

• File usage patterns should influence design 
decisions. Do things differently depending:
– How large are most files? How long-lived?

Read vs. write activity. Shared often?
– Different levels “see” a different workload.

• Feedback loop
Usage patterns 
observed today

File System
design and impl



Generalizations from UNIX 
Workloads

• Standard Disclaimers that you can’t 
generalize…but anyway…

• Most files are small (fit into one disk block) 
although most bytes are transferred from 
longer files.

• Most opens are for read mode, most bytes 
transferred are by read operations

• Accesses tend to be sequential and 100%



More on Access Patterns

• There is significant reuse (re-opens) − most 
opens go to files repeatedly opened & 
quickly.  Directory nodes and executables 
also exhibit good temporal locality.
– Looks good for caching!

• Use of temp files is significant part of file 
system activity in UNIX − very limited 
reuse, short lifetimes (less than a minute).



What to do about long paths?

• Make long lookups cheaper − cluster inodes
and data on disk to make each component 
resolution step somewhat cheaper
– Immediate files − meta-data and first block of 

data co-located
• Collapse prefixes of paths − hash table

– Prefix table
• “Cache it” − in this case, directory info



What to do about Disks?

• Disk scheduling
– Idea is to reorder outstanding requests to 

minimize seeks.
• Layout on disk

– Placement to minimize disk overhead
• Build a better disk (or substitute)

– Example: RAID



File Buffer Cache

• Avoid the disk for as 
many file operations as 
possible.

• Cache acts as a filter for 
the requests seen by the 
disk − reads served best.

• Delayed writeback will 
avoid going to disk at all 
for temp files.

Memory

File
cache

Proc



Handling Updates in the File 
Cache

1. Blocks may be modified in memory once they 
have been brought into the cache.

Modified blocks are dirty and must (eventually) be written back.

2. Once a block is modified in memory, the write 
back to disk may not be immediate (synchronous).
Delayed writes absorb many small updates with one disk write.

How long should the system hold dirty data in memory?
Asynchronous writes allow overlapping of computation and disk 

update activity (write-behind).
Do the write call for block n+1 while transfer of block n is in progress.



Disk Scheduling

• Assuming there are sufficient outstanding 
requests in request queue

• Focus is on seek time - minimizing physical 
movement of head.

• Simple model of seek performance
Seek Time = startup time  (e.g. 3.0 ms) + 

N (number of cylinders ) * 
per-cylinder move (e.g. .04 ms/cyl)



Policies
• Generally use FCFS as baseline for 

comparison
• Shortest Seek First (SSTF) -closest

– danger of starvation
• Elevator (SCAN) - sweep in one 

direction, turn around when no 
requests beyond
– handle case of constant arrivals 

at same position
• C-SCAN - sweep in only one 

direction, return to 0
– less variation in response

1, 3, 2, 4, 3, 5, 0
FCFS

SSTF

SCAN

CSCAN



Layout on Disk

• Can address both seek and rotational latency
• Cluster related things together 

(e.g. an inode and its data, inodes in same 
directory (ls command), data blocks of multi-
block file, files in same directory)

• Sub-block allocation to reduce fragmentation for 
small files

• Log-Structure File Systems



The Problem of Disk Layout
• The level of indirection in the file block maps 

allows flexibility in file layout.
• “File system design is 99% block allocation.” [McVoy]

• Competing goals for block allocation:
– allocation cost
– bandwidth for high-volume transfers
– stamina
– efficient directory operations

• Goal: reduce disk arm movement and seek 
overhead.

• metric of merit: bandwidth utilization



FFS and LFS
Two different approaches to block allocation:

– Cylinder groups in the Fast File System (FFS) [McKusick81]
• clustering enhancements [McVoy91], and improved cluster allocation 

[McKusick: Smith/Seltzer96]
• FFS can also be extended with metadata logging [e.g., Episode]

– Log-Structured File System (LFS)
• proposed in [Douglis/Ousterhout90]
• implemented/studied in [Rosenblum91]
• BSD port, sort of maybe:  [Seltzer93]
• extended with self-tuning methods [Neefe/Anderson97]

– Other approach: extent-based file systems



FFS Cylinder Groups
• FFS defines cylinder groups as the unit of disk locality, and it 

factors locality into allocation choices.
– typical: thousands of cylinders, dozens of groups
– Strategy: place “related” data blocks in the same cylinder group 

whenever possible.
• seek latency is proportional to seek distance

– Smear large files across groups:
• Place a run of contiguous blocks in each group.

– Reserve inode blocks in each cylinder group.
• This allows inodes to be allocated close to their directory entries and 

close to their data blocks (for small files).



FFS Allocation Policies
1. Allocate file inodes close to their containing directories.

For mkdir, select a cylinder group with a more-than-average number 
of free inodes.

For creat, place inode in the same group as the parent.

2. Concentrate related file data blocks in cylinder groups.
Most  files are read and written sequentially.

Place initial blocks of a file in the same group as its inode.
How should we handle directory blocks?

Place adjacent logical blocks in the same cylinder group.
Logical block n+1 goes in the same group as block n.
Switch to a different group for each indirect block.



Allocating a Block
1. Try to allocate the rotationally optimal physical 

block after the previous logical block in the file.
Skip rotdelay physical blocks between each logical block.
(rotdelay is 0 on track-caching disk controllers.)

2. If not available, find another block a nearby 
rotational position in the same cylinder group

We’ll need a short seek, but we won’t wait for the rotation.
If not available, pick any other block in the cylinder group.

3. If the cylinder group is full, or we’re crossing to a 
new indirect block, go find a new cylinder group.

Pick a block at the beginning of a run of free blocks.



Clustering in FFS
• Clustering improves bandwidth utilization for large files 

read and written sequentially.
• Allocate clumps/clusters/runs of blocks contiguously; read/write the 

entire clump in one operation with at most one seek.
– Typical cluster sizes: 32KB to 128KB.

• FFS can allocate contiguous runs of blocks “most of the 
time” on disks with sufficient free space.
– This (usually) occurs as a side effect of setting rotdelay = 0.

• Newer versions may relocate to clusters of contiguous storage if the 
initial allocation did not succeed in placing them well.

– Must modify buffer cache to group buffers together and read/write 
in contiguous clusters.



Log-Structured File System 
(LFS)

In LFS, all block and metadata allocation is log-based.
– LFS views the disk as “one big log” (logically).
– All writes are clustered and sequential/contiguous.

• Intermingles metadata and blocks from different files.
– Data is laid out on disk in the order it is written.
– No-overwrite allocation policy: if an old block or inode is 

modified, write it to a new location at the tail of the log.
– LFS uses (mostly) the same metadata structures as FFS; only the 

allocation scheme is different.
• Cylinder group structures and free block maps are eliminated.
• Inodes are found by indirecting through a new map (the ifile).



Writing the Log in LFS
1. LFS “saves up” dirty blocks and dirty inodes until it 

has a full segment (e.g., 1 MB).
– Dirty inodes are grouped into block-sized clumps.
– Dirty blocks are sorted by (file, logical block number).
– Each log segment includes summary info and a 

checksum.

2. LFS writes each log segment in a single burst, with 
at most one seek.
– Find a free segment “slot” on the disk, and write it.
– Store a back pointer to the previous segment.

• Logically the log is sequential, but physically it consists of a
chain of segments, each large enough to amortize seek overhead.



Example of log growth

Clean segmentf11 f12 f21 i

f11 f12 f21 i ss f31 i if



Writing the Log: the Rest of the 
Story

1. LFS cannot always delay writes long enough to accumulate 
a full segment; sometimes it must push a partial segment.
– fsync, update daemon, NFS server, etc.
– Directory operations are synchronous in FFS, and some must be in

LFS as well to preserve failure semantics and ordering.

2. LFS allocation and write policies affect the buffer cache, 
which is supposed to be filesystem-independent.
– Pin (lock) dirty blocks until the segment is written; dirty blocks 

cannot be recycled off the free chain as before.
– Endow *indirect blocks with permanent logical block numbers 

suitable for hashing in the buffer cache.



Cleaning in LFS
What does LFS do when the disk fills up?
1. As the log is written, blocks and inodes written earlier in 

time are superseded (“killed”) by versions written later.
– files are overwritten or modified; inodes are updated
– when files are removed, blocks and inodes are deallocated

2. A cleaner daemon compacts remaining live data to free up 
large hunks of free space suitable for writing segments.
– look for segments with little remaining live data

• benefit/cost analysis to choose segments
– write remaining live data to the log tail
– can consume a significant share of bandwidth, and there are lots of 

cost/benefit heuristics involved.


