
Outline for Today

• Objective
– Review of basic file system material

• Administrative
– ??

Review of
File System Issues

• What is the role of files?
What is the file abstraction?

• File naming. How to find the file we want?
Sharing files. Controlling access to files.

• Performance issues - how to deal with the
bottleneck of disks?
What is the “right” way to optimize file
access?

Role of Files

• Persistance − long-lived − data for posterity
! non-volitile storage media
! semantically meaningful (memorable) names

Abstractions
Addressbook, record for Duke CPS

User
view

Application

File System

addrfile −>fid, byte range*

Disk Subsystem

device, block #

surface, cylinder, sector

bytes

fid

block#

Functions of File System
• (Directory subsystem) Map filenames to fileids-open

(create) syscall. Create kernel data structures.
Maintain naming structure (unlink, mkdir, rmdir)

• Determine layout of files and metadata on disk in
terms of blocks. Disk block allocation. Bad blocks.

• Handle read and write system calls
• Initiate I/O operations for movement of blocks

to/from disk.
• Maintain buffer cache

Functions of Device Subsystem

In general, deal with device characteristics
• Translate block numbers (the abstraction of

device shown to file system) to physical
disk addresses.
Device specific (subject to change with
upgrades in technology) intelligent placement
of blocks.

• Schedule (reorder?) disk operations

VFS: the Filesystem Switch

syscall layer (file, uio, etc.)
user space

Virtual File System (VFS)network
protocol

stack
(TCP/IP) NFS FFS LFS ext2.*FS xfs.

device drivers

Sun Microsystems introduced the virtual file system framework
in 1985 to accommodate the Network File System cleanly.

• VFS allows diverse specific file systems to coexist in a file tree,
isolating all FS-dependencies in pluggable filesystem modules.

VFS was an internal kernel restructuring
with no effect on the syscall interface.

Incorporates object-oriented concepts:
a generic procedural interface with
multiple implementations.

Based on abstract objects with dynamic
method binding by type...in C.Other abstract interfaces in the kernel: device drivers,

file objects, executable files, memory objects.

Vnodes*
In the VFS framework, every file or directory in active use is

represented by a vnode object in kernel memory.

syscall layer

NFS UFS

free vnodes

Active vnodes are reference-
counted by the structures that
hold pointers to them, e.g.,
the system open file table.

Each vnode has a standard
file attributes struct.

Vnode operations are
macros that vector to
filesystem-specific
procedures.

Generic vnode points at
filesystem-specific struct
(e.g., inode, rnode), seen
only by the filesystem.

Each specific file system
maintains a hash of its
resident vnodes.

*inode object in Linux VFS

Network File System (NFS)

syscall layer

UFS

NFS
server

VFS

VFS

NFS
client

UFS

syscall layer

client
user programs

network

server

File Abstractions
• UNIX-like files

– Sequence of bytes
– Operations: open (create), close, read, write, seek

• Memory mapped files
– Sequence of bytes
– Mapped into address space
– Page fault mechanism does data transfer

• Named, Possibly typed

syscall layer (file, uio, etc.)
user space

Virtual File System (VFS)network
protocol

stack
(TCP/IP) NFS FFS LFS ext2.*FS xfs.

device drivers

Memory Mapped Files
fd = open (somefile, consistent_mode);
pa = mmap(addr, len, prot, flags, fd, offset);

VAS

len

len

pa

fd + offset
R, W, X,
none

Shared,
Private,
Fixed,
Noreserve

Reading performed by Load instr.

UNIX File System Calls

char buf[BUFSIZE];
int fd;

if ((fd = open(“../zot”, O_TRUNC | O_RDWR) == -1) {
perror(“open failed”);
exit(1);

}
while(read(0, buf, BUFSIZE)) {

if (write(fd, buf, BUFSIZE) != BUFSIZE) {
perror(“write failed”);
exit(1);

}
}

Pathnames may be
relative to process
current directory.

Process does not specify
current file offset: the
system remembers it.

Process passes status back
to parent on exit, to report
success/failure.

Open files are named to
by an integer file
descriptor.

Standard descriptors (0, 1, 2)
for input, output, error
messages (stdin, stdout,
stderr).

File Sharing Between
Parent/Child (UNIX)

main(int argc, char *argv[]) {
char c;
int fdrd, fdwt;

if ((fdrd = open(argv[1], O_RDONLY)) == -1)
exit(1);

if ((fdwt = creat([argv[2], 0666)) == -1)
exit(1);

fork();

for (;;) {
if (read(fdrd, &c, 1) != 1)

exit(0);
write(fdwt, &c, 1);

}
} [Bach]

Sharing Open File Instances

shared seek
offset in shared
file table entry

system open
file table

user ID
process ID

process group ID
parent PID
signal state

siblings
children

user ID
process ID

process group ID
parent PID
signal state

siblings
children

process file
descriptorsprocess

objects

shared file
(inode or vnode)

child

parent

Corresponding Linux File Objects

system open
file table

user ID
process ID

process group ID
parent PID
signal state

siblings
children

user ID
process ID

process group ID
parent PID
signal state

siblings
children

process file
descriptorsprocess

objects

child

parent

per-process
files_struct

file objects
created on open

dcache

dentry
objects

inode
object

Goals of File Naming
• Foremost function - to find files,

Map file name to file object.
• To store meta-data about files.
• To allow users to choose their own file names

without undue name conflict problems.
• To allow sharing.
• Convenience: short names, groupings.
• To avoid implementation complications

Meta-Data

• File size
• File type
• Protection - access

control information
• History:

creation time,
last modification,
last access.

• Location of file -
which device

• Location of individual
blocks of the file on
disk.

• Owner of file
• Group(s) of users

associated with file

Operations on Directories (UNIX)

• Link - make entry pointing to file
• Unlink - remove entry pointing to file
• Rename
• Mkdir - create a directory
• Rmdir - remove a directory

Naming Structures
Naming Hierarchy
• Component names - pathnames

– Absolute pathnames - from a designated root
– Relative pathnames - from a working directory
– Each name carries how to resolve it.
– No cycles – allows reference counting to reclaim

deleted nodes.
• Links

– Short names to files anywhere for convenience in
naming things – symbolic links – map to pathname

Links

usr

Lynn Marty

ln /usr/Lynn/foo barunlink foo
foo

creat foo

ln -s /usr/Marty/bar bar

unlink bar

creat bar

bar

A Typical Unix File Tree

/

tmp usretc

File trees are built by grafting
volumes from different devices
or from network servers.

Each volume is a set of directories and files; a host’s file tree is the set of
directories and files visible to processes on a given host.

bin vmunix

ls sh project users

packages

(coverdir)

In Unix, the graft operation is
the privileged mount system call,
and each volume is a filesystem.

mount point
mount (coveredDir, volume)

coveredDir: directory pathname
volume: device specifier or network volume

volume root contents become visible at pathname coveredDir

A Typical Unix File Tree

/

tmp usretc

File trees are built by grafting
volumes from different devices
or from network servers.

Each volume is a set of directories and files; a host’s file tree is the set of
directories and files visible to processes on a given host.

bin vmunix

ls sh project users

packages

(volume root)

tex emacs

In Unix, the graft operation is
the privileged mount system call,
and each volume is a filesystem.

mount point
mount (coveredDir, volume)

coveredDir: directory pathname
volume: device specifier or network volume

volume root contents become visible at pathname coveredDir

/usr/project/packages/coverdir/tex

Access Control for Files

• Access control lists - detailed list attached
to file of users allowed (denied) access,
including kind of access allowed/denied.

• UNIX RWX - owner, group, everyone

Implementation Issues:
UNIX Inodes

File
Attributes

B
lo

ck
A

dd
r

...

...
...

...

...

... ...

Data Block Addr

1

1

1

2

2

2

2

3 3 3 3

Data blocks

Decoupling meta-data
from directory entries

Pathname Resolution

inode#spr04

Directory node
File
Attributes

inode#Proj

Directory node File
Attributes

cps210 spr04

inode#proj1

Directory node
Proj

File
Attributes

proj1proj1
data filedata file

Surprisingly,
most lookups
are multi-
component
(in fact, most
are Absolute).

Linux dcache

cps210
dentry

spr04
dentry

Proj
dentry

proj1
dentry

Inode
object

Inode
object

Inode
object

Inode
object

Hash
table

File Structure Alternatives

• Contiguous
– 1 block pointer, causes fragmentation, growth is a

problem.

• Linked
– each block points to next block, directory points to first,

OK for sequential access

• Indexed
– index structure required, better for random access into

file.

File Allocation Table (FAT)

Lecture.ppt

Pic.jpg

Notes.txt

eof

eof

eof

Finally Arrive at File

• What do users seem to want from the file
abstraction?

• What do these usage patterns mean for file
structure and implementation decisions?
– What operations should be optimized 1st?
– How should files be structured?
– Is there temporal locality in file usage?
– How long do files really live?

Know your Workload!

• File usage patterns should influence design
decisions. Do things differently depending:
– How large are most files? How long-lived?

Read vs. write activity. Shared often?
– Different levels “see” a different workload.

• Feedback loop
Usage patterns
observed today

File System
design and impl

Generalizations from UNIX
Workloads

• Standard Disclaimers that you can’t
generalize…but anyway…

• Most files are small (fit into one disk block)
although most bytes are transferred from
longer files.

• Most opens are for read mode, most bytes
transferred are by read operations

• Accesses tend to be sequential and 100%

More on Access Patterns

• There is significant reuse (re-opens) − most
opens go to files repeatedly opened &
quickly. Directory nodes and executables
also exhibit good temporal locality.
– Looks good for caching!

• Use of temp files is significant part of file
system activity in UNIX − very limited
reuse, short lifetimes (less than a minute).

What to do about long paths?

• Make long lookups cheaper − cluster inodes
and data on disk to make each component
resolution step somewhat cheaper
– Immediate files − meta-data and first block of

data co-located
• Collapse prefixes of paths − hash table

– Prefix table
• “Cache it” − in this case, directory info

What to do about Disks?

• Disk scheduling
– Idea is to reorder outstanding requests to

minimize seeks.
• Layout on disk

– Placement to minimize disk overhead
• Build a better disk (or substitute)

– Example: RAID

File Buffer Cache

• Avoid the disk for as
many file operations as
possible.

• Cache acts as a filter for
the requests seen by the
disk − reads served best.

• Delayed writeback will
avoid going to disk at all
for temp files.

Memory

File
cache

Proc

Handling Updates in the File
Cache

1. Blocks may be modified in memory once they
have been brought into the cache.

Modified blocks are dirty and must (eventually) be written back.

2. Once a block is modified in memory, the write
back to disk may not be immediate (synchronous).
Delayed writes absorb many small updates with one disk write.

How long should the system hold dirty data in memory?
Asynchronous writes allow overlapping of computation and disk

update activity (write-behind).
Do the write call for block n+1 while transfer of block n is in progress.

Disk Scheduling

• Assuming there are sufficient outstanding
requests in request queue

• Focus is on seek time - minimizing physical
movement of head.

• Simple model of seek performance
Seek Time = startup time (e.g. 3.0 ms) +

N (number of cylinders) *
per-cylinder move (e.g. .04 ms/cyl)

Policies
• Generally use FCFS as baseline for

comparison
• Shortest Seek First (SSTF) -closest

– danger of starvation
• Elevator (SCAN) - sweep in one

direction, turn around when no
requests beyond
– handle case of constant arrivals

at same position
• C-SCAN - sweep in only one

direction, return to 0
– less variation in response

1, 3, 2, 4, 3, 5, 0
FCFS

SSTF

SCAN

CSCAN

Layout on Disk

• Can address both seek and rotational latency
• Cluster related things together

(e.g. an inode and its data, inodes in same
directory (ls command), data blocks of multi-
block file, files in same directory)

• Sub-block allocation to reduce fragmentation for
small files

• Log-Structure File Systems

The Problem of Disk Layout
• The level of indirection in the file block maps

allows flexibility in file layout.
• “File system design is 99% block allocation.” [McVoy]

• Competing goals for block allocation:
– allocation cost
– bandwidth for high-volume transfers
– stamina
– efficient directory operations

• Goal: reduce disk arm movement and seek
overhead.

• metric of merit: bandwidth utilization

FFS and LFS
Two different approaches to block allocation:

– Cylinder groups in the Fast File System (FFS) [McKusick81]
• clustering enhancements [McVoy91], and improved cluster allocation

[McKusick: Smith/Seltzer96]
• FFS can also be extended with metadata logging [e.g., Episode]

– Log-Structured File System (LFS)
• proposed in [Douglis/Ousterhout90]
• implemented/studied in [Rosenblum91]
• BSD port, sort of maybe: [Seltzer93]
• extended with self-tuning methods [Neefe/Anderson97]

– Other approach: extent-based file systems

FFS Cylinder Groups
• FFS defines cylinder groups as the unit of disk locality, and it

factors locality into allocation choices.
– typical: thousands of cylinders, dozens of groups
– Strategy: place “related” data blocks in the same cylinder group

whenever possible.
• seek latency is proportional to seek distance

– Smear large files across groups:
• Place a run of contiguous blocks in each group.

– Reserve inode blocks in each cylinder group.
• This allows inodes to be allocated close to their directory entries and

close to their data blocks (for small files).

FFS Allocation Policies
1. Allocate file inodes close to their containing directories.

For mkdir, select a cylinder group with a more-than-average number
of free inodes.

For creat, place inode in the same group as the parent.

2. Concentrate related file data blocks in cylinder groups.
Most files are read and written sequentially.

Place initial blocks of a file in the same group as its inode.
How should we handle directory blocks?

Place adjacent logical blocks in the same cylinder group.
Logical block n+1 goes in the same group as block n.
Switch to a different group for each indirect block.

Allocating a Block
1. Try to allocate the rotationally optimal physical

block after the previous logical block in the file.
Skip rotdelay physical blocks between each logical block.
(rotdelay is 0 on track-caching disk controllers.)

2. If not available, find another block a nearby
rotational position in the same cylinder group

We’ll need a short seek, but we won’t wait for the rotation.
If not available, pick any other block in the cylinder group.

3. If the cylinder group is full, or we’re crossing to a
new indirect block, go find a new cylinder group.

Pick a block at the beginning of a run of free blocks.

Clustering in FFS
• Clustering improves bandwidth utilization for large files

read and written sequentially.
• Allocate clumps/clusters/runs of blocks contiguously; read/write the

entire clump in one operation with at most one seek.
– Typical cluster sizes: 32KB to 128KB.

• FFS can allocate contiguous runs of blocks “most of the
time” on disks with sufficient free space.
– This (usually) occurs as a side effect of setting rotdelay = 0.

• Newer versions may relocate to clusters of contiguous storage if the
initial allocation did not succeed in placing them well.

– Must modify buffer cache to group buffers together and read/write
in contiguous clusters.

Log-Structured File System
(LFS)

In LFS, all block and metadata allocation is log-based.
– LFS views the disk as “one big log” (logically).
– All writes are clustered and sequential/contiguous.

• Intermingles metadata and blocks from different files.
– Data is laid out on disk in the order it is written.
– No-overwrite allocation policy: if an old block or inode is

modified, write it to a new location at the tail of the log.
– LFS uses (mostly) the same metadata structures as FFS; only the

allocation scheme is different.
• Cylinder group structures and free block maps are eliminated.
• Inodes are found by indirecting through a new map (the ifile).

Writing the Log in LFS
1. LFS “saves up” dirty blocks and dirty inodes until it

has a full segment (e.g., 1 MB).
– Dirty inodes are grouped into block-sized clumps.
– Dirty blocks are sorted by (file, logical block number).
– Each log segment includes summary info and a

checksum.

2. LFS writes each log segment in a single burst, with
at most one seek.
– Find a free segment “slot” on the disk, and write it.
– Store a back pointer to the previous segment.

• Logically the log is sequential, but physically it consists of a
chain of segments, each large enough to amortize seek overhead.

Example of log growth

Clean segmentf11 f12 f21 i

f11 f12 f21 i ss f31 i if

Writing the Log: the Rest of the
Story

1. LFS cannot always delay writes long enough to accumulate
a full segment; sometimes it must push a partial segment.
– fsync, update daemon, NFS server, etc.
– Directory operations are synchronous in FFS, and some must be in

LFS as well to preserve failure semantics and ordering.

2. LFS allocation and write policies affect the buffer cache,
which is supposed to be filesystem-independent.
– Pin (lock) dirty blocks until the segment is written; dirty blocks

cannot be recycled off the free chain as before.
– Endow *indirect blocks with permanent logical block numbers

suitable for hashing in the buffer cache.

Cleaning in LFS
What does LFS do when the disk fills up?
1. As the log is written, blocks and inodes written earlier in

time are superseded (“killed”) by versions written later.
– files are overwritten or modified; inodes are updated
– when files are removed, blocks and inodes are deallocated

2. A cleaner daemon compacts remaining live data to free up
large hunks of free space suitable for writing segments.
– look for segments with little remaining live data

• benefit/cost analysis to choose segments
– write remaining live data to the log tail
– can consume a significant share of bandwidth, and there are lots of

cost/benefit heuristics involved.

