
Outline for Today

• Objective
– Continue review of basic file system material 

• Administrative
– Rest of term plan in outline
– Program 1



File Structure Alternatives

• Contiguous
– 1 block pointer, causes fragmentation, growth is a 

problem.

• Linked
– each block points to next block, directory points to first, 

OK for sequential access

• Indexed
– index structure required, better for random access into 

file.



File Allocation Table (FAT)
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File Access Patterns

• What do users seem to want from the file 
abstraction?

• What do these usage patterns mean for file 
structure and implementation decisions?
– What operations should be optimized 1st?
– How should files be structured?
– Is there temporal locality in file usage?
– How long do files really live?



Know your Workload!

• File usage patterns should influence design 
decisions. Do things differently depending:
– How large are most files? How long-lived?

Read vs. write activity. Shared often?
– Different levels “see” a different workload.

• Feedback loop
Usage patterns 
observed today

File System
design and impl



Generalizations from UNIX 
Workloads

• Standard Disclaimers that you can’t 
generalize…but anyway…

• Most files are small (fit into one disk block) 
although most bytes are transferred from 
longer files.

• Most opens are for read mode, most bytes 
transferred are by read operations

• Accesses tend to be sequential and 100%



More on Access Patterns

• There is significant reuse (re-opens) − most 
opens go to files repeatedly opened & 
quickly.  Directory nodes and executables 
also exhibit good temporal locality.
– Looks good for caching!

• Use of temp files is significant part of file 
system activity in UNIX − very limited 
reuse, short lifetimes (less than a minute).



What to do about long paths?

• Make long lookups cheaper − cluster inodes
and data on disk to make each component 
resolution step somewhat cheaper
– Immediate files − meta-data and first block of 

data co-located
• Collapse prefixes of paths − hash table

– Prefix table
• “Cache it” − in this case, directory info



What to do about Disks?

• Disk scheduling
– Idea is to reorder outstanding requests to 

minimize seeks.
• Layout on disk

– Placement to minimize disk overhead
• Build a better disk (or substitute)

– Example: RAID



Avoiding the Disk -- Caching



File Buffer Cache

• Avoid the disk for as 
many file operations as 
possible.

• Cache acts as a filter for 
the requests seen by the 
disk − reads served best.

• Delayed writeback will 
avoid going to disk at all 
for temp files.

Memory

File
cache

Proc



Handling Updates in the File 
Cache

1. Blocks may be modified in memory once they 
have been brought into the cache.

Modified blocks are dirty and must (eventually) be written back.

2. Once a block is modified in memory, the write 
back to disk may not be immediate (synchronous).
Delayed writes absorb many small updates with one disk write.

How long should the system hold dirty data in memory?
Asynchronous writes allow overlapping of computation and disk 

update activity (write-behind).
Do the write call for block n+1 while transfer of block n is in progress.



Linux Page Cache
• Page Cache is the disk cache for all page-based 

I/O – subsumes file buffer cache.
– All page I/O flows through page cache

• pdflush daemons – writeback to disk any dirty 
pages/buffers.
– When free memory falls below threshold, wakeup 

daemon to reclaim free memory
• Specified number written back
• Free memory above threshold

– Periodically, to prevent old data not getting written 
back, wakeup on timer expiration

• Writes all pages older than specified limit.



Disk Scheduling – Seek Opt.



Disk Scheduling

• Assuming there are sufficient outstanding 
requests in request queue

• Focus is on seek time - minimizing physical 
movement of head.

• Simple model of seek performance
Seek Time = startup time  (e.g. 3.0 ms) + 

N (number of cylinders ) * 
per-cylinder move (e.g. .04 ms/cyl)



“Textbook” Policies
• Generally use FCFS as baseline for 

comparison
• Shortest Seek First (SSTF) -closest

– danger of starvation
• Elevator (SCAN) - sweep in one 

direction, turn around when no 
requests beyond
– handle case of constant arrivals 

at same position
• C-SCAN - sweep in only one 

direction, return to 0
– less variation in response

1, 3, 2, 4, 3, 5, 0
FCFS

SSTF

SCAN

CSCAN



Linux Disk Schedulers
• Linus Elevator

– Merging and sorting: when new request comes in 
• Merge with any enqueued request for adjacent sector
• If any request is too old, put new request at end of queue
• Sort by sector location in queue (between existing requests)
• Otherwise at end

• Deadline – each request placed on 2 of 3 queues
– sector-wise – as above
– read FIFO and write FIFO – whenever expiration time exceeded, 

service from here

• Anticipatory
– Hang around waiting for subsequent request just a bit



Disk Layout



Layout on Disk

• Can address both seek and rotational latency
• Cluster related things together 

(e.g. an inode and its data, inodes in same 
directory (ls command), data blocks of multi-
block file, files in same directory)

• Sub-block allocation to reduce fragmentation for 
small files

• Log-Structure File Systems



The Problem of Disk Layout
• The level of indirection in the file block maps 

allows flexibility in file layout.
• “File system design is 99% block allocation.” [McVoy]

• Competing goals for block allocation:
– allocation cost
– bandwidth for high-volume transfers
– efficient directory operations

• Goal: reduce disk arm movement and seek 
overhead.

• metric of merit: bandwidth utilization



FFS Cylinder Groups
• FFS defines cylinder groups as the unit of disk locality, and it 

factors locality into allocation choices.
– typical: thousands of cylinders, dozens of groups
– Strategy: place “related” data blocks in the same cylinder group 

whenever possible.
• seek latency is proportional to seek distance

– Smear large files across groups:
• Place a run of contiguous blocks in each group.

– Reserve inode blocks in each cylinder group.
• This allows inodes to be allocated close to their directory entries and 

close to their data blocks (for small files).



FFS Allocation Policies
1. Allocate file inodes close to their containing directories.

For mkdir, select a cylinder group with a more-than-average number 
of free inodes.

For creat, place inode in the same group as the parent.

2. Concentrate related file data blocks in cylinder groups.
Most  files are read and written sequentially.

Place initial blocks of a file in the same group as its inode.
How should we handle directory blocks?

Place adjacent logical blocks in the same cylinder group.
Logical block n+1 goes in the same group as block n.
Switch to a different group for each indirect block.



Allocating a Block
1. Try to allocate the rotationally optimal physical 

block after the previous logical block in the file.
Skip rotdelay physical blocks between each logical block.
(rotdelay is 0 on track-caching disk controllers.)

2. If not available, find another block a nearby 
rotational position in the same cylinder group

We’ll need a short seek, but we won’t wait for the rotation.
If not available, pick any other block in the cylinder group.

3. If the cylinder group is full, or we’re crossing to a 
new indirect block, go find a new cylinder group.

Pick a block at the beginning of a run of free blocks.



Clustering in FFS
• Clustering improves bandwidth utilization for large files 

read and written sequentially.
• Allocate clumps/clusters/runs of blocks contiguously; read/write the 

entire clump in one operation with at most one seek.
– Typical cluster sizes: 32KB to 128KB.

• FFS can allocate contiguous runs of blocks “most of the 
time” on disks with sufficient free space.
– This (usually) occurs as a side effect of setting rotdelay = 0.

• Newer versions may relocate to clusters of contiguous storage if the 
initial allocation did not succeed in placing them well.

– Must modify buffer cache to group buffers together and read/write 
in contiguous clusters.



Effect of Clustering
Access time = seek time + rotational delay + transfer time

average seek time = 2 ms for an intra-cylinder group seek, let’s say
rotational delay = 8 milliseconds for full rotation at 7200 RPM: average       

delay = 4 ms
transfer time = 1 millisecond for an 8KB block at 8 MB/s

8 KB blocks deliver about 15% of disk bandwidth.
64KB blocks/clusters deliver about 50% of disk bandwidth.

128KB blocks/clusters deliver about 70% of disk bandwidth.
Actual performance will likely be better with good 
disk layout, since most seek/rotate delays to read the 
next block/cluster will be “better than average”.



Log-Structured File Systems
• Assumption: Cache is effectively filtering out reads so we 

should optimize for writes
• Basic Idea: manage disk as an append-only log (subsequent 

writes involve minimal head movement)
• Data and meta-data (mixed) accumulated in large segments and 

written contiguously
• Reads work as in UNIX - once inode is found, data blocks 

located via index.
• Cleaning an issue - to produce contiguous free space, correcting 

fragmentation developing over time.
• Claim: LFS can use 70% of disk bandwidth for writing while 

Unix FFS can use only 5-10% typically because of seeks.



LFS logs

In LFS, all block and metadata allocation is log-based.
– LFS views the disk as “one big log” (logically).
– All writes are clustered and sequential/contiguous.

• Intermingles metadata and blocks from different files.
– Data is laid out on disk in the order it is written.
– No-overwrite allocation policy: if an old block or inode is 

modified, write it to a new location at the tail of the log.
– LFS uses (mostly) the same metadata structures as FFS; only the 

allocation scheme is different.
• Cylinder group structures and free block maps are eliminated.
• Inodes are found by indirecting through a new map



LFS Data Structures on Disk
• Inode – in log, same as FFS
• Inode map – in log, locates position of inode, version, time 

of last access
• Segment summary – in log, identifies contents of segment 

(file#, offset for each block in segment)
• Segment usage table – in log, counts live bytes in segment 

and last write time
• Checkpoint region – fixed location on disk, locates blocks 

of inode map, identifies last checkpoint in log.
• Directory change log – in log, records directory operations 

to maintain consistency of ref counts in inodes



Structure of the Log

clean

Checkpoint 
region

= inode map block

= inode

D1

= directory node

File 2File 1
block 2

= data block

File 1
block1

= segment summary, usage, dirlog



Writing the Log in LFS
1. LFS “saves up” dirty blocks and dirty inodes until 

it has a full segment (e.g., 1 MB).
– Dirty inodes are grouped into block-sized clumps.
– Dirty blocks are sorted by (file, logical block number).
– Each log segment includes summary info and a 

checksum.
2. LFS writes each log segment in a single burst, with 

at most one seek.
– Find a free segment “slot” on the disk, and write it.
– Store a back pointer to the previous segment.

• Logically the log is sequential, but physically it consists of a
chain of segments, each large enough to amortize seek 
overhead.



Growth of the Log

write (file1, block1)
creat (D1/file3)
write (file3, block1)

clean

Checkpoint 
region

D1File 2File 1
block 2

File 1
block1

File 1
block1 File 3 D1



Death in the Log

write (file1, block1)
creat (D1/file3)
write (file3, block1)

clean

Checkpoint 
region

D1File 2File 1
block 2

File 1
block1

File 1
block1 File 3 D1



Writing the Log: the Rest of the 
Story

1. LFS cannot always delay writes long enough to accumulate 
a full segment; sometimes it must push a partial segment.
– fsync, update daemon, NFS server, etc.
– Directory operations are synchronous in FFS, and some must be in

LFS as well to preserve failure semantics and ordering.

2. LFS allocation and write policies affect the buffer cache, 
which is supposed to be filesystem-independent.
– Pin (lock) dirty blocks until the segment is written; dirty blocks 

cannot be recycled off the free chain as before.
– Endow *indirect blocks with permanent logical block numbers 

suitable for hashing in the buffer cache.



Cleaning in LFS
What does LFS do when the disk fills up?
1. As the log is written, blocks and inodes written earlier in 

time are superseded (“killed”) by versions written later.
– files are overwritten or modified; inodes are updated
– when files are removed, blocks and inodes are deallocated

2. A cleaner daemon compacts remaining live data to free up 
large hunks of free space suitable for writing segments.
– look for segments with little remaining live data

• benefit/cost analysis to choose segments
– write remaining live data to the log tail
– can consume a significant share of bandwidth, and there are lots of 

cost/benefit heuristics involved.



Cleaning the Log

Checkpoint 
region

D1File 2File 1
block 2

File 1
block1

File 1
block1 File 3 D1

clean



Cleaning the Log

Checkpoint 
region

D1

File 2

File 1
block 2

File 1
block1

File 1
block1 File 3 D1

File 1
block 2

File 2



Cleaning the Log

Checkpoint 
region

File 2

File 1
block1 File 3 D1

File 1
block 2

clean



Cleaning Issues

• Must be able to identify which blocks are live
• Must be able to identify the file to which each 

block belongs in order to update inode to new 
location

• Segment Summary block contains this info
– File contents associated with uid (version # and inode 

#)
– Inode entries contain version # (incr. on truncate)
– Compare to see if inode points to block under 

consideration



Policies
• When cleaner cleans – threshold based
• How much – 10s at a time until threshold reached
• Which segments

– Most fragmented segment is not best choice.
– Value of free space in segment depends on stability of 

live data (approx. age)
– Cost / benefit analysis 

Benefit = free space available (1-u) * age of youngest block
Cost = cost to read segment + cost to move live data

– Segment usage table supports this
• How to group live blocks



Recovering Disk Contents
• Checkpoints – define consistent states

– Position in log where all data structures are consistent
– Checkpoint region (fixed location) – contains the addresses of all blocks 

of inode map and segment usage table, ptr to last segment written
• Actually 2 that alternate in case a crash occurs while writing checkpoint region 

data

• Roll-forward – to recover beyond last checkpoint
– Uses Segment summary blocks at end of log – if we find new inodes, 

update inode map found from checkpoint
– Adjust utilizations in segment usage table
– Restore consistency in ref counts within inodes and directory entries 

pointing to those inodes using Directory operation log (like an intentions 
list)



Recovery of the Log

Checkpoint 
region

D1File 2File 1
block 2

File 1
block1

File 1
block1 File 3 D1

Written since checkpoint



Disk Power Management



Spin-down Disk Model

Not
Spinning

Spinning
& Ready

Spinning
& Access

Spinning
& Seek

Spinning
up

Spinning
down

Inactivity Timeout 
threshold*

Request

Trigger:
request or 
predict

Predictive



Energy = ✟ Poweri x Timei

Reducing Energy Consumption

i ✒ power
states

Energy = ✟ Poweri x Timei

To reduce energy used for task:
– Reduce power cost of power state I through better technology.

– Reduce time spent in the higher cost power states.

– Amortize transition states (spinning up or down) if significant.

Pdown∗ Tdown + 2*Etransition + Pspin * Tout < Pspin*Tidle

Tdown = T idle - (Ttransition + Tout)



Spin-down Disk Model

Not
Spinning

Spinning
& Ready

Spinning
& Access

Spinning
& Seek

Spinning
up

Spinning
down Tout

Inactivity Timeout 
threshold*

Request

Trigger:
request or 
predict

Predictive

~1- 3s delay
Etransition = Ptransition * Ttransition

Tdown

Tidle

Pdown Pspin

Etransition =
Ptransition * Ttransition



Power Specs

IBM Microdrive (1inch)
• writing 300mA (3.3V)

1W
• standby 65mA (3.3V)

.2W

IBM TravelStar (2.5inch)
• read/write 2W
• spinning 1.8W
• low power idle .65W
• standby .25W
• sleep .1W
• startup 4.7 W
• seek 2.3W



Spin-down Disk Model

Not
Spinning

Spinning
& Ready

Spinning
& Access

Spinning
& Seek

Spinning
up

Spinning
down

Request

Trigger:
request or 
predict

Predictive

.2W .65-1.8W

2W2.3W4.7W



Spin-Down Policies

• Fixed Thresholds
– Tout = spin-down cost s.t. 2*Etransition = Pspin*Tout

• Adaptive Thresholds: Tout = f (recent accesses)
– Exploit burstiness in Tidle

• Minimizing Bumps (user annoyance/latency)
– Predictive spin-ups

• Changing access patterns (making burstiness)
– Caching
– Prefetching



Disk Alternatives



Build a Better Disk?

• “Better” has typically meant density to disk 
manufacturers - bigger disks are better.

• I/O Bottleneck - a speed disparity caused by 
processors getting faster more quickly

• One idea is to use parallelism of multiple disks
– Striping data across disks
– Reliability issues - introduce redundancy



RAID

Redundant Array of Inexpensive Disks

Striped Data Parity 
Disk

(RAID Levels 2 and 3)



• Settling time after X seek
• Spring factor - non-uniform
over sled positions

• Turnaround time

MEMS-based Storage



Data on Media Sled



Distributed File Systems

Remote Storage
&

Caching



Distributed File Systems

• Naming
– Location transparency/ 

independence

• Caching
– Consistency

• Replication
– Availability and 

updates

server

network

server

client

client

client



Cache Consistency
• Location of cache on client -

disk or memory
• Update policy

– write through
– delayed writeback
– write-on-close

• Consistency
– Client does validity check, 

contacting server
– Server call-backs

server

network

server

client

client

client



File Cache Consistency

• Caching is a key technique in distributed systems.
• The cache consistency problem: cached data may become stale

if cached data is updated elsewhere in the network.

• Solutions:
– Timestamp invalidation (NFS).

• Timestamp each cache entry, and periodically query the server: 
“has this file changed since time t?”; invalidate cache if stale.

– Callback invalidation (AFS).
• Request notification (callback) from the server if the file 

changes; invalidate cache on callback.
– Leases (NQ-NFS) [Gray&Cheriton89]



78

Sun NFS Cache Consistency
• Server is stateless
• Requests are self-contained.
• Blocks are transferred and 

cached in memory.
• Timestamp of last known 

mod kept with cached file, 
compared with “true” 
timestamp at server on 
Open. 
(Good for an interval)

• Updates delayed but 
flushed before Close ends.

server

network

server

client

client

client

ti
tj

open
ti== tj ?

write/
close
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AFS Cache Consistency
• Server keeps state of all 

clients holding copies (copy 
set)

• Callbacks when cached data 
are about to become stale

• Large units (whole files or 
64K portions)

• Updates propagated upon 
close

• Cache on local disk −> 
memory

server

network

server

c0

c1

c2

{c0, c1}

close

callback



NQ-NFS Leases
• In NQ-NFS, a client obtains a lease on the file that 

permits the client’s desired read/write activity.
– “A lease is a ticket permitting an activity; the lease is valid 

until some expiration time.” - temporary statefulness
– A read-caching lease allows the client to cache clean data.

• Guarantee: no other client is modifying the file.
– A write-caching lease allows the client to buffer modified 

data for the file. Must push data before expiration
• Guarantee: no other client has the file cached.

• Leases may be revoked by the server if another client 
requests a conflicting operation (server sends eviction 
notice). Push in write_slack period.



Explicit First-class Replication

• File name maps to set of replicas, one of 
which will be used to satisfy request
– Goal: availability

• Update strategy
– Atomic updates - all or none
– Primary copy approach
– Voting schemes
– Optimistic, then detection of conflicts



Optimistic vs. Pessimistic

• High availability 
Conflicting updates 
are the potential 
problem - requiring 
detection and 
resolution.

• Avoids conflicts by 
holding of shared or 
exclusive locks.

• How to arrange when 
disconnection is 
involuntary?

• Leases [Gray, SOSP89] 
puts a time-bound on 
locks but what about 
expiration?


