Welcome to CPS 210

• Graduate Level Operating Systems
 – readings, discussions, and programming projects

• Systems Quals course
 – midterm and final exams

• Gateway to systems research
 – E-track term project
Logistics

//www.cs.duke.edu/courses/spring05cps210/

• Programming projects in Linux -- practical hands-on experience with a “real” OS. Book describing kernel design.
• Readings from the literature -- research topics.
• Background: any undergraduate Introduction to OS textbook – Tanenbaum recommended
• Discussion, in class / collaboration, outside of class.
E- and G- Tracks

E-track project:
• Project of your choice
• Mini-conference during reading period.
• Milestones:
 – March 7 - 1 page proposal.
What is an OS?

Traditional Definitions

- **Resource Manager** of physical (HW) devices...

- **Abstract machine** environment. The OS defines a set of logical resources (objects) and operations on those objects (an interface on the use of those objects).

- Allows **sharing** of resources. Controls interactions among different users.
What is an OS?

Traditional Definitions

- Birthplace of *system design principles*: e.g., Separation of Policy and Mechanism.
- Supporting role - to provide services for the target workload, not an end product itself.
- Privileged, protected software - the *kernel*. Different kind relationship between OS and user code (entry via system calls, interrupts).
What is an OS?
Traditional Definitions

• **Resource Manager** of physical (HW) devices

 ...

 – CPU (computation cycles)
 – Primary memory
 – Secondary memory devices (disk, tapes)
 – Networks
 – Input devices (keyboard, mouse, camera)
 – Output devices (printers, display, speakers)
What is an OS?
Traditional Definitions

• *Resource Manager* of physical (HW) devices …
 – Working simultaneously (source of ||ism).
 – Shared among tasks.
 – Relative performance, capacity, & cost constantly changing.
What is an OS?
Traditional Definitions

• *Resource Manager* of physical (HW) devices ...

• *Abstract machine* environment…
 – Threads or Processes (Fork)
 – Address spaces (Allocate)
 – Files (Open, Close, Read, Write)
 – Messages (Send, Receive)
What is an OS?

Traditional Definitions

• *Resource Manager* of physical (HW) devices...

• *Abstract machine* environment...

• Allows *sharing* of resources. Controls interactions among different users.
What is an OS? Traditional Definitions

• Birthplace of *system design principles*:
 – Separation of Policy and Mechanism.
 – End-to-end argument.
 – Need-to-know principle.
 – Cache it!
What is an OS?

Traditional Definitions

• Birthplace of *system design principles*…

• Supporting role - to provide services for the target workload, not an end product itself.
 – Implications on design (build for the common case of the workload as you know it)
 – Implications on performance evaluation
 • *Everything* the OS does is overhead.
 • Must have a good workload model.
What is an OS?

Traditional Definitions

- Birthplace of *system design principles*…
- Supporting role - to provide services for the target workload, not an end product itself.
- Privileged, protected software - the *kernel*. Different kind relationship between OS and user code (entry via system calls, interrupts).
 - OS *structure* is always an issue
Trends

• Non-performance goals: *-abilities: adaptability, availability, reliability.
• Use of remote resources (harvesting cycles, memory, storage, etc).
• Growth areas: wide area (Internet), clusters, grid, multimedia, mobility, ubiquitous computing, embedded systems.
• Security!
• Challenges / opportunities of HW advances.
Traditional Influences in OS Design

- Workload
- Services & API
- Internal Structure
- Policies / Mechanisms
- Hardware Resources
- Metrics
Influences in OS Design

Traditional

Workload

Services & API

Internal Structure

Policies / Mechanisms

Hardware Resources

Scientific computations
Database operations
Multi-user

Metrics

Performance as Bandwidth and Latency.

Processor, Memory, Disks, Network, Keyboard, Display, Multiprocessors
Changing Influences in OS Design

Workload

Services & API

Internal Structure

Policies / Mechanisms

Hardware Resources

Productivity applications
Games, Multimedia, Web
Process control
Personal (PDAs), Embedded.
E-Commerce

Metrics

Performance as Bandwidth and Latency.

Processor, Memory, Disks, Network, Keyboard, Display, Multiprocessors
Influences in OS Design

Changing

Workload

Productivity applications
- Games, Multimedia, Web
- Process control

Personal (PDAs), Embedded E-Commerce

Services & API

Policies / Mechanisms

Internal Structure

Metrics

Performance as Bandwidth and Latency.

Hardware Resources

- Processor, Memory, Disks (?), Wireless & IR,
- Keyboard(?), Display(?), Mic & Speaker,
- Motors & Sensors, GPS, Camera, Batteries

Productivity applications
- Games, Multimedia, Web
- Process control

Personal (PDAs), Embedded E-Commerce
Influences in OS Design

Changing

Workload
- Productivity applications
 - Games, Multimedia, Web
- Process control
- Personal (PDAs), Embedded
- E-Commerce

Services & API
- Resources
- Accessibility, Reliability, No-futz-ness
- Energy efficiency, Security

Internal Structure

Policies / Mechanisms

Hardware Resources
- Processor, Memory, Disks (?), Wireless & IR
- Keyboard(?), Display(?), Mic & Speaker
- Motors & Sensors, GPS, Camera, Batteries

Metrics