
1

Outline for Today
• Objectives:

– To review
• the process and thread abstractions.
• the mechanisms for implementing processes

(threads), including scheduling
– To detail

• the Linux design decisions.

• Announcements

2

OS Abstractions
Abstract machine environment. The OS defines a

set of logical resources (objects) and operations
on those objects (an interface for the use of those
objects).

Hides the physical hardware.

3

(Traditional) Unix Abstractions
• Processes - thread of control with context

• Files - everything else
– Regular file – named, linear stream of data bytes
– Sockets - endpoints of communication, possible

between unrelated processes
– Pipes - unidirectional I/O stream, can be unnamed
– Devices

4

Process Abstraction

5

The Basics of Processes

• Processes are the OS-provided
abstraction of multiple tasks (including
user programs) executing concurrently.

• One instance of a program (which is only
a passive set of bits) executing
(implying an execution context –
register state, memory resources, etc.)

• OS schedules processes to share CPU.

6

Why Use Processes?
• To capture naturally concurrent activities

within the structure of the programmed
system.

• To gain speedup by overlapping activities
or exploiting parallel hardware.
– From DMA to multiprocessors

7

Separation of
Policy and Mechanism

• “Why and What” vs. “How”
• Objectives and strategies vs. data

structures, hardware and software
implementation issues.

• Process abstraction vs. Process machinery

8

Process Abstraction
• Unit of scheduling
• One (or more*) sequential threads of control

– program counter, register values, call stack
• Unit of resource allocation

– address space (code and data), open files
– sometimes called tasks or jobs

• Operations on processes: fork (clone-style
creation), wait (parent on child),
exit (self-termination), signal, kill.

Process-related System Calls in Unix.

9

Threads and Processes
• Decouple the resource allocation aspect from the

control aspect
• Thread abstraction - defines a single sequential

instruction stream (PC, stack, register values)
• Task or process - the resource context serving as

a “container” for one or more threads (shared
address space)

• Kernel-supported threads - unit of scheduling
(kernel-supported thread operations −> generally slow)

11

An Example

Address Space

Thread Thread

Editing thread:
Responding to
your typing in
your doc

Autosave thread:
periodically
writes your doc
file to disk

doc

Doc formatting process

12

User Level Thread Packages
• To avoid the performance penalty of kernel-

supported threads, implement at user level and
manage by a run-time system
– Contained “within” a single kernel entity (process)
– Invisible to OS (OS schedules their container, not

being aware of the threads themselves or their states).
Poor scheduling decisions possible.

• User-level thread operations can be 100x faster
than kernel thread operations, but need better
integration / cooperation with OS.

13

Linux Processes
• Processes and threads are not differentiated –

with varying degrees of shared resources
• clone() system call takes flags to determine what

resources parent and child processes will share:
– Open files
– Signal handlers
– Address space
– Same parent

14

Process-related System Calls
• Simple and powerful primitives for process

creation and initialization.
– Unix fork creates a child process as (initially) a clone of

the parent
[Linux: fork() implemented by clone() system call]

– parent program runs in child process – maybe just to set
it up for exec

– child can exit, parent can wait for child to do so.
[Linux: wait4 system call]

15

Unix Process Relationships

int pid;
int status = 0;

if (pid = fork()) {
/* parent */
…..
pid = wait(&status);

} else {
/* child */
…..
exit(status);

}

Parent uses wait to sleep
until the child exits; wait
returns child pid and
status.

Wait variants allow wait
on a specific child, or
notification of stops and
other signals.

Child process passes
status back to parent on
exit, to report
success/failure.

The fork syscall returns a
zero to the child and the
child process ID to the
parent.

Fork creates an exact
copy of the parent
process.

16

Child Discipline

• After a fork, the parent program has complete
control over the behavior of its child.

• The child inherits its execution environment
from the parent...but the parent program can
change it.

• Parent program may cause the child to
execute a different program, by calling exec*
in the child context.

17

Exec, Execve, etc.
• Children should have lives of their own.
• Exec* “boots” the child with a different executable

image.
– parent program makes exec* syscall (in forked child

context) to run a program in a new child process
– exec* overlays child process with a new executable

image
– restarts in user mode at predetermined entry point

(e.g., crt0)
– no return to parent program (it’s gone)
– arguments and environment variables passed in

memory
– file descriptors etc. are unchanged

19

“Join” Scenarios
• Several cases must be considered for join

(e.g., exit/wait).
– What if the child exits before the parent joins?

• “Zombie” process object holds child status and stats.
– What if the parent continues to run but never

joins?
• How not to fill up memory with zombie processes?

– What if the parent exits before the child?
• Orphans become children of init (process 1).

– What if the parent can’t afford to get “stuck” on a
join?

• Unix makes provisions for asynchronous notification.

20

Process Mechanisms

21

Context Switching
• When a process is running, its program

counter, register values, stack pointer, etc.
are contained in the hardware registers of the
CPU. The process has direct control of the
CPU hardware for now.

• When a process is not the one currently
running, its current register values are saved
in a process descriptor data structure
(task_struct)

• Context switching involves moving state
between CPU and various processes’
descriptors by the OS.

22

Linux task_struct
• Process descriptor in

kernel memory
represents a process
(allocated on process
creation, deallocated
on termination).
– Linux: task_struct,

located via task pointer
in thread_info structure
on process’s kernel
state.

state
prio
policy
*parent
tasks
pid
…

task_struct

task_struct

23

Linux task_struct

state
prio
policy
*parent
tasks
pid
…

process stack

thread_info
*task

task_struct

task_struct

24

Process State Transitions

Ready

Create
Process

Running

Blocked

Wakeup
(due to event)

sleep (due to
outstanding request

of syscall)

scheduled

suspended
while another
process scheduled

Done

25

Linux Process States

TASK_RUNNING

Ready

fork()

TASK_INTERRUPTABLE
TASK_UNINTERRUPTABLE

Blocked

Wakeup
(due to event)

sleep (due to
outstanding request

of syscall)

scheduled

suspended
while another
process scheduled

TASK_RUNNING

Running

TASK_ZOMBIE

Done
exit()

27

Scheduling

28

Interleaved Schedules

Uni-processor
implementation

logical concept /
multiprocessor
implementation

context
switch

29

Scheduling: Policy and
Mechanism

• Scheduling policy answers the question:
Which process/thread, among all those ready to run,
should be given the chance to run next? In what order do
the processes/threads get to run? For how long?

• Mechanisms are the tools for supporting the
process/thread abstractions and affect how the
scheduling policy can be implemented.
– How the process or thread is represented to the system -

process descriptor.
– What happens on a context switch.
– When do we get the chance to make these scheduling

decisions (timer interrupts, thread operations that yield or
block, user program system calls)

30

Flavors
• Long-term scheduling - which jobs get

resources (e.g. get allocated memory) and the
chance to compete for cycles (to be on the ready
queue).

• Short-term scheduling or process scheduling
- which of those gets the next slice of CPU time

• Non-preemptive - the running process/thread
has to explicitly give up control

• Preemptive - interrupts cause scheduling
opportunities to reevaluate who should be
running now (is there a more “valuable” ready
task?)

31

Preemption
• Scheduling policies may be preemptive or non-

preemptive.
• Preemptive: scheduler may unilaterally force a task to

relinquish the processor before the task blocks, yields, or
completes.

– timeslicing prevents jobs from monopolizing the CPU
• Scheduler chooses a job and runs it for a quantum of CPU

time.
• A job executing longer than its quantum is forced to yield by

scheduler code running from the clock interrupt handler.
– use preemption to honor priorities

• Preempt a job if a higher priority job enters the ready state.

32

Priority
• Some goals can be met by incorporating a notion of priority

into a “base” scheduling discipline.
• Each job in the ready pool has an associated priority value; the

scheduler favors jobs with higher priority values.

• External priority values:
– imposed on the system from outside
– reflect external preferences for particular users or tasks

• “All jobs are equal, but some jobs are more equal than others.”
– Example: Unix nice system call to lower priority of a task.
– Example: Urgent tasks in a real-time process control system.

• Internal priorities
– scheduler dynamically calculates and uses for queuing

discipline. System adjusts priority values internally as as an
implementation technique within the scheduler.

33

Internal Priority
• Drop priority of tasks consuming more than their share
• Boost tasks that already hold resources that are in

demand
• Boost tasks that have starved in the recent past
• Adaptive to observed behavior: typically a continuous,

dynamic, readjustment in response to observed
conditions and events
– May be visible and controllable to other parts of the system
– Priority reassigned if I/O bound (large unused portion of quantum)

or if CPU bound (nothing left)

34

Keeping Your Priorities Straight
• Priorities must be handled carefully when there

are dependencies among tasks with different
priorities.
– A task with priority P should never impede the progress

of a task with priority Q > P.
• This is called priority inversion, and it is to be avoided.

– The basic solution is some form of priority inheritance.
• When a task with priority Q waits on some resource, the holder

(with priority P) temporarily inherits priority Q if Q > P.
• Inheritance may also be needed when tasks coordinate with

IPC.
– Inheritance is useful to meet deadlines and preserve

low-jitter execution, as well as to honor priorities.

35

Pitfalls:
Mars Pathfinder Example

• In July 1997, Pathfinder’s computer reset itself several
times during data collection and transmission from Mars.
– One of its processes failed to complete by a deadline, triggering the

reset.

• Priority Inversion Problem.
– A low priority process held a mutual exclusion semaphore on a

shared data structure, but was preempted to let higher priority
processes run.

– The higher priority process which failed to complete in time was
blocked on this semaphore.

– Meanwhile a bunch of medium priority processes ran, until finally
the deadline ran out. The low priority semaphore-holding process
never got the chance to run again in that time to get to the point of
releasing the semaphore

– Priority inheritance had not been enabled on semaphore.

36

CPU Scheduling Policy
• The CPU scheduler makes a sequence of

“moves” that determines the interleaving of
threads.
Programs use synchronization to prevent “bad moves”.
…but otherwise scheduling choices appear (to the

program) to be nondeterministic.

Scheduler’s
ready pool

Wakeup or
ReadyToRun schedule()

CONTEXT SWITCH

37

Scheduler Policy Goals &
Metrics of Success

– Response time or latency (to minimize the average time
between arrival to completion of requests)

• How long does it take to do what I asked? (R) Arrival −> done.
– Throughput (to maximize productivity)

• How many operations complete per unit of time? (X)
– Utilization (to maximize use of some device)

• What percentage of time does the CPU (and each device) spend
doing useful work? (U)
time-in-use / elapsed time

– Fairness
• What does this mean? Divide the pie evenly? Guarantee low

variance in response times? Freedom from starvation?
• Proportional sharing of resources

– Meet deadlines and guarantee jitter-free periodic tasks
• real time systems (e.g. process control, continuous media)

39

Multiprogramming and
Utilization

• Early motivation: Overlap of computation and I/O
• Determine mix and multiprogramming level with the goal

of “covering” the idle times caused by waiting on I/O.

Time −>

CPU I/O Gantt Chart

Context switch overheads

40

Classic Scheduling Algorithms
• SJF - Shortest Job First (provably optimal in

minimizing average response time, assuming we
know service times in advance)

• FIFO, FCFS
• Round Robin
• Multilevel Feedback Queuing
• Priority Scheduling (using priority queue data

structure)

41

Multilevel Feedback Queue
• Many systems (e.g., Unix variants) use a

multilevel feedback queue.
– multilevel. Separate queue for each of N priority levels.
– feedback. Factor previous behavior into new job

priority.

high

low

I/O bound jobs waiting for CPU

CPU-bound jobs

jobs holding resouces
jobs with high external priority

ready queues
indexed by priority

GetNextToRun selects job
at the head of the highest
priority queue.

constant time, no sorting

Priority of CPU-bound
jobs decays with system
load and service received.

42

Real Time Schedulers
• Real-time schedulers must support regular,

periodic execution of tasks (e.g., continuous
media).
– CPU Reservations

• “I need to execute for X out of every Y units.”
• Scheduler exercises admission control at reservation

time: application must handle failure of a reservation
request.

– Proportional Share
• “I need 1/n of resources”

– Time Constraints
• “Run this before my deadline at time T.”

43

Assumptions
• Tasks are periodic with constant interval

between requests, Ti (request rate 1/Ti)
• Each task must be completed before the

next request for it occurs
• Tasks are independent
• Run-time for each task is constant (max),

Ci

• Any non-periodic tasks are special

44

Task Model

time

✦1

✦2

Ti Ti

T2

C1 = 1

C2 = 1

45

Definitions
• Deadline is time of next request
• Overflow at time t if t is deadline of unfulfilled

request
• Feasible schedule - for a given set of tasks, a

scheduling algorithm produces a schedule so no
overflow ever occurs.

• Critical instant for a task - time at which a request
will have largest response time.
– Occurs when task is requested simultaneously with all

tasks of higher priority

46

Rate Monotonic

• Assign priorities to tasks according to their
request rates, independent of run times

• Optimal in the sense that no other fixed
priority assignment rule can schedule a task
set which can not be scheduled by rate
monotonic.

• If feasible (fixed) priority assignment exists for
some task set, rate monotonic is feasible for
that task set.

47

Earliest Deadline First
• Dynamic algorithm
• Priorities are assigned to tasks according to the

deadlines of their current request
• With EDF there is no idle time prior to an

overflow
• For a given set of m tasks, EDF is feasible iff

C1/T1 + C2/T2 + … + Cm/Tm [1
• If a set of tasks can be scheduled by any

algorithm, it can be scheduled by EDF

48

Linux Scheduling Policy
• Runnable process with highest priority and

timeslice remaining runs (SCHED_OTHER
policy)
– Dynamically calculated priority

• Starts with nice value
• Bonus or penalty reflecting whether I/O or compute

bound by tracking sleep time vs. runnable time:
sleep_avg and decremented by timer tick while
running

49

Linux Scheduling Policy
– Dynamically calculated timeslice

• The higher the dynamic priority, the longer the timeslice:

– Recalculated every round when “expired” and “active”
swap

– Exceptions for expired interactive
• Go back on active unless there are starving expired tasks

Low priority
less interactive

High priority
more interactive

10ms 150ms 300ms

50

.

.

.

.

.

.

Runqueue for O(1) Scheduler

active

expired

priority array

priority array

.

.

.

.

.

.

priority queue

priority queue

priority queue

priority queue

Higher priority
more I/O
300ms

lower priority
more CPU
10ms

51

.

.

.

.

.

.

Runqueue for O(1) Scheduler

active

expired

priority array

priority array

.

.

.

.

.

.

priority queue

priority queue

priority queue

priority queue

1
0

52

.

.

.

.

.

.

Runqueue for O(1) Scheduler

active

expired

priority array

priority array

.

.

.

.

.

.

priority queue

priority queue

priority queue

priority queue

1

0

X

X

53

Linux Real-time
• No guarantees
• SCHED_FIFO

– Static priority, effectively higher than
SCHED_OTHER processes*

– No timeslice – it runs until it blocks or yields
voluntarily

– RR within same priority level
• SCHED_RR

– As above but with a timeslice.

* Although their priority number ranges overlap

55

Support for SMP
• Every processor has its

own private runqueue
• Locking – spinlock

protects runqueue
• Load balancing – pulls

tasks from busiest
runqueue into mine.

• Affinity – cpus_allowed
bitmask constrains a
process to particular set of
processors

• load_balance runs from
schedule() when runqueue is
empty or periodically esp. during
idle.

• Prefers to pull processes from
expired, not cache-hot, high
priority, allowed by affinity

P P P P

Memory

$ $ $ $

Symmetric mp

56

Synchronization

57

The Trouble with Concurrency
in Threads...

Thread0 Thread1

Data: x

while(i<10)
{x=x+1;

i++;}

0

while(j<10)
{x=x+1;

j++;}

0 0i j

What is the value of x when both threads
leave this while loop?

58

Range of Answers
Process 0
LD x // x currently 0

Add 1
ST x // x now 1, stored over 9

Do 9 more full loops // leaving x at 10

Process1

LD x // x currently 0
Add 1
ST x // x now 1
Do 8 more full loops // x = 9

LD x // x now 1

Add 1
ST x // x = 2 stored over 10

59

Nondeterminism
• What unit of work can be

performed without
interruption? Indivisible or
atomic operations.

• Interleavings - possible
execution sequences of
operations drawn from all
threads.

• Race condition - final
results depend on ordering
and may not be “correct”.

while (i<10) {x=x+1; i++;}

load value of x into reg
yield()
add 1 to reg
yield ()
store reg value at x
yield ()

60

Reasoning about Interleavings
• On a uniprocessor, the possible execution

sequences depend on when context switches can
occur
– Voluntary context switch - the process or thread

explicitly yields the CPU (blocking on a system call it
makes, invoking a Yield operation).

– Interrupts or exceptions occurring - an asynchronous
handler activated that disrupts the execution flow.

– Preemptive scheduling - a timer interrupt may cause an
involuntary context switch at any point in the code.

• On multiprocessors, the ordering of operations on
shared memory locations is the important factor.

61

Critical Sections
• If a sequence of non-atomic operations must be

executed as if it were atomic in order to be correct,
then we need to provide a way to constrain the
possible interleavings in this critical section of our
code.
– Critical sections are code sequences that

contribute to “bad” race conditions.
– Synchronization needed around such critical

sections.
• Mutual Exclusion - goal is to ensure that critical

sections execute atomically w.r.t. related critical
sections in other threads or processes.
– How?

62

The Critical Section Problem
Each process follows this template:

while (1)
{ ...other stuff... //processes in here shouldn’t stop

others
enter_region();
critical section
exit_region();

}
The problem is to define enter_region and

exit_region to ensure mutual exclusion with some
degree of fairness.

63

Implementation Options for
Mutual Exclusion

• Disable Interrupts
• Busywaiting solutions - spinlocks

– execute a tight loop if critical section is busy
– benefits from specialized atomic (read-mod-write)

instructions

• Blocking synchronization
– sleep (enqueued on wait queue) while C.S. is busy

Synchronization primitives (abstractions, such as
locks) which are provided by a system may be
implemented with some combination of these
techniques.

