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Outline for Today
• Objectives: 

– Scheduling (continued).
– System Calls and Interrupts.

• Announcements
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Scheduler Policy Goals & 
Metrics of Success

– Response time or latency (to minimize the average time 
between arrival to completion of requests)

• How long does it take to do what I asked? (R) Arrival −> done.
– Throughput (to maximize productivity)

• How many operations complete per unit of time? (X)
– Utilization (to maximize use of some device) 

• What percentage of time does the CPU (and each device) spend 
doing useful work? (U) 
time-in-use / elapsed time

– Fairness
• What does this mean?  Divide the pie evenly?  Guarantee low 

variance in response times?  Freedom from starvation?
• Proportional sharing of resources

– Meet deadlines and guarantee jitter-free periodic tasks
• real time systems (e.g. process control, continuous media)
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Multiprogramming and 
Utilization

• Early motivation: Overlap of computation and I/O
• Determine mix and multiprogramming level with the goal 

of “covering” the idle times caused by waiting on I/O.

Time −>

CPU I/O Gantt Chart

Context switch overheads
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Classic Scheduling Algorithms
• SJF - Shortest Job First (provably optimal in 

minimizing average response time, assuming we 
know service times in advance)

• FIFO, FCFS
• Round Robin
• Multilevel Feedback Queuing
• Priority Scheduling (using priority queue data 

structure)
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Multilevel Feedback Queue
• Many systems (e.g., Unix variants) use a 

multilevel feedback queue.
– multilevel. Separate queue for each of N priority levels.
– feedback.  Factor previous behavior into new job 

priority.

high

low

I/O bound jobs waiting for CPU

CPU-bound jobs

jobs holding resouces
jobs with high external priority

ready queues
indexed by priority

GetNextToRun selects job
at the head of the highest
priority queue.

constant time, no sorting

Priority of CPU-bound
jobs decays with system
load and service received. 
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Real Time Schedulers
• Real-time schedulers must support regular, 

periodic execution of tasks (e.g., continuous 
media).
– CPU Reservations

• “I need to execute for X out of every Y units.”
• Scheduler exercises admission control at reservation 

time: application must handle failure of a reservation 
request.

– Proportional Share
• “I need 1/n of resources”

– Time Constraints
• “Run this before my deadline at time T.”
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Assumptions
• Tasks are periodic with constant interval 

between requests, Ti (request rate 1/Ti)
• Each task must be completed before the 

next request for it occurs
• Tasks are independent
• Run-time for each task is constant (max),

Ci

• Any non-periodic tasks are special
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Task Model

time

✦1

✦2

Ti Ti

T2

C1 = 1

C2 = 1
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Definitions
• Deadline is time of next request
• Overflow at time t if t is deadline of unfulfilled 

request
• Feasible schedule - for a given set of tasks, a 

scheduling algorithm produces a schedule so no 
overflow ever occurs.

• Critical instant for a task - time at which a request 
will have largest response time.
– Occurs when task is requested simultaneously with all 

tasks of higher priority
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Rate Monotonic

• Assign priorities to tasks according to their 
request rates, independent of run times

• Optimal in the sense that no other fixed 
priority assignment rule can schedule a task 
set which can not be scheduled by rate 
monotonic.

• If feasible (fixed) priority assignment exists for 
some task set, rate monotonic is feasible for 
that task set.
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Earliest Deadline First
• Dynamic algorithm
• Priorities are assigned to tasks according to the 

deadlines of their current request
• With EDF there is no idle time prior to an 

overflow
• For a given set of m tasks, EDF is feasible iff

C1/T1 + C2/T2 + … + Cm/Tm [ 1
• If a set of tasks can be scheduled by any 

algorithm, it can be scheduled by EDF
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Linux Scheduling Policy
• Runnable process with highest priority and 

timeslice remaining runs (SCHED_OTHER 
policy)
– Dynamically calculated priority

• Starts with nice value
• Bonus or penalty reflecting whether I/O or compute 

bound by tracking sleep time vs. runnable time: 
sleep_avg and decremented by timer tick while 
running
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Linux Scheduling Policy
– Dynamically calculated timeslice

• The higher the dynamic priority, the longer the timeslice:

– Recalculated every round when “expired” and “active” 
swap

– Exceptions for expired interactive 
• Go back on active unless there are starving expired tasks

Low priority
less interactive

High priority
more interactive

10ms 150ms 300ms
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Linux Real-time
• No guarantees
• SCHED_FIFO

– Static priority, effectively higher than 
SCHED_OTHER processes*

– No timeslice – it runs until it blocks or yields 
voluntarily

– RR within same priority level
• SCHED_RR

– As above but with a timeslice.

* Although their priority number ranges overlap
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Support for SMP
• Every processor has its 

own private runqueue
• Locking – spinlock 

protects runqueue
• Load balancing – pulls 

tasks from busiest 
runqueue into mine.

• Affinity – cpus_allowed 
bitmask constrains a 
process to particular set of 
processors

• load_balance runs from 
schedule( ) when runqueue is 
empty or periodically esp. during 
idle.

• Prefers to pull processes from 
expired, not cache-hot, high 
priority, allowed by affinity

P P P P

Memory

$ $ $ $

Symmetric mp
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Synchronization
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The Trouble with Concurrency 
in Threads...

Thread0 Thread1

Data: x

while(i<10)
{x=x+1;
i++;}

0

while(j<10)
{x=x+1;
j++;}

0 0i j

What is the value of x when both threads
leave this while loop?
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Range of Answers
Process 0
LD x         // x currently 0

Add 1
ST x         // x now 1, stored over 9

Do 9 more full loops // leaving x at 10

Process1

LD x            // x currently 0
Add 1
ST x            // x now 1
Do 8 more full loops   // x = 9

LD x            // x now 1

Add 1
ST x           // x = 2 stored over 10



24

Nondeterminism
• What unit of work can be 

performed without 
interruption? Indivisible or 
atomic operations.

• Interleavings - possible 
execution sequences of 
operations drawn from all 
threads.

• Race condition - final 
results depend on ordering 
and may not be “correct”.

while (i<10) {x=x+1; i++;}

load value of x into reg
yield( )
add 1 to reg
yield ( )
store reg value at x
yield ( )
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Reasoning about Interleavings
• On a uniprocessor, the possible execution 

sequences depend on when context switches can 
occur
– Voluntary context switch - the process or thread 

explicitly yields the CPU (blocking on a system call it 
makes, invoking a Yield operation).

– Interrupts or exceptions occurring - an asynchronous 
handler activated that disrupts the execution flow.

– Preemptive scheduling - a timer interrupt may cause an 
involuntary context switch at any point in the code.

• On multiprocessors, the ordering of operations on 
shared memory locations is the important factor.
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Critical Sections
• If a sequence of non-atomic operations must be 

executed as if it were atomic in order to be correct, 
then we need to provide a way to constrain the 
possible interleavings in this critical section of our 
code. 
– Critical sections are code sequences that 

contribute to “bad” race conditions.
– Synchronization needed around such critical 

sections.
• Mutual Exclusion - goal is to ensure that critical 

sections execute atomically w.r.t. related critical 
sections in other threads or processes.
– How?
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The Critical Section Problem
Each process follows this template:

while (1)
{ ...other stuff...   //processes in here shouldn’t stop 

others
enter_region( );
critical section
exit_region( );

}
The problem is to define enter_region and 

exit_region to ensure mutual exclusion with some 
degree of fairness.
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Implementation Options for 
Mutual Exclusion

• Disable Interrupts
• Busywaiting solutions - spinlocks

– execute a tight loop if critical section is busy
– benefits from specialized atomic (read-mod-write) 

instructions

• Blocking synchronization
– sleep (enqueued on wait queue) while C.S. is busy

Synchronization primitives (abstractions, such as 
locks) which are provided by a system may be 
implemented with some combination of these 
techniques.
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Kernel Entry



Crossing Protection 
Boundaries

• For a user to do something 
"privileged", it must invoke an 
OS procedure providing that 
service. How?

• System Calls
– special trap instruction that 

causes an exception which 
vectors to a kernel handler

– parameters indicate which 
system routine called



User / Kernel Modes
• Hardware support to 

differentiate between what we'll 
allow user code to do by itself 
(user mode) and what we'll have 
the OS do 
(kernel mode). 

• Mode indicated by status bit in 
protected processor register.

• Privileged instructions can only 
be executed in kernel mode (I/O 
instructions).

• Protected memory space

User Programs

OS
Kernel

HW

Syscalls

Machine instructions



Interrupts and Exceptions
• Unnatural change in control flow
• Interrupt is external event 

– devices: disk, network, keyboard, etc.
– clock for timeslicing
– These are useful events, must do something when they occur.

• Exception is potential problem with program
– segmentation fault
– bus error
– divide by 0
– Don’t want my bug to crash the entire machine
– page fault (virtual memory…)

• System calls leverage this mechanism



An Execution Context
• The state of the CPU associated with a thread of control 

(process context)
– general purpose registers (integer and floating point)
– status registers (e.g., condition codes)
– program counter, stack pointer

• Kernel executes in process context during system calls
– Preemptible, kernel capable of sleeping
– Linux system calls must be reentrant

• Need to be able to switch between contexts
– better utilization of machine (overlap I/O of one process with 

computation of another)
– timeslicing: sharing  the machine among many processes



A System Call
Trap

Handler
System_call()

User Program

• Special Instruction to change 
modes and invoke service

– read/write I/O device
– create new process

• Invokes specific kernel 
routine based on argument

– Syscall # in eax register
• kernel defined interface

– Arguments passed in registers
• May return from trap to 

different process --
schedule()

• instruction to return to user 
process

Service
Routines

Kernel
ld

add
st

$0x80
beq
ld

sub
bne



Usual Path to Invoking 
System Call

User space Kernel space

application C library
Syscall 
handler

Service 
routine

wrapper system_call()read(…) sys_read()



Role of Interrupts in I/O
So, the program needs to access an I/O device…

• Start an I/O operation (special instructions or 
memory-mapped I/O)

• Device controller performs the operation 
asynchronously (in parallel with) CPU processing 
(between controller's buffer & device).

• If DMA, data transferred between controller's 
buffer and memory without CPU involvement.

• Interrupt signals I/O completion when device is 
done.



CPU handles Interrupt

• For each interrupt number, jumps to address 
of appropriate interrupt service routine. 
[do_IRQ()]

– Interrupt context

– Kernel stack of whatever was interrupted

– Can not sleep

• Handlers on this line do what needs to be 
done. [handle_IRQ_event()]

– Unless SA_INTERRUPT specified when 
registered, re-enable interrupts during 
handler execution

– If line is shared, loop through all handlers

• Restores saved state at interrupted instruction 
[ret_from_intr()],
returns to user mode.

ld
add
st

mul
beq
ld

sub
bne

do_IRQ()
handle_IRQ_event

Ret_from_intr()

User Program

Interrupt Handling

• Device raises interrupt line, CPU detects this, CPU stops current operation, 
disables interrupts, enters kernel mode, saves current program counter, jumps 
to predefined location, saves other processor state needed to continue at 
interrupted instruction. 
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Interrupt Control
• local_irq_disable() and local_irq_enable() --

affecting all interrupts for this processor
• local_irq_save(…) and local_irq_restore(…) –

save and disable interrupts on this processor and 
restore previous interrupt state

• disable_irq(irq), disable_irq_nosynch(irq), 
enable_irq(irq) – affecting particular interrupt line 

• Informational: 
– irqs_disabled() – local interrupts disabled?
– in_interrupt() – in interrupt context or process context?
– In_irq() – executing an interrupt handler?



Bottom Half Processing
• Deferring work that is too heavyweight for interrupt 

handling
• Mechanisms:

– Softirqs
“soft interrupts”, statically defined (32 max.) action functions that 
can run concurrently on SMP
pending when bit set in 32-bitmask (usually set in associated 
interrupt handler [raise_softirq()]
run with interrupts enabled, proper locking required

– Tasklets
dynamically created functions that are built upon softirqs,
two of the same type can not run concurrently
lists of tasklet_struct hooked to 2 of the softirqs

– Workqueue
implemented as kernel-based “worker” threads with process 
context of their own -- thus allowed to sleep


