
1

Outline for Today
• Objectives:

– Scheduling (continued).
– System Calls and Interrupts.

• Announcements

2

Scheduler Policy Goals &
Metrics of Success

– Response time or latency (to minimize the average time
between arrival to completion of requests)

• How long does it take to do what I asked? (R) Arrival −> done.
– Throughput (to maximize productivity)

• How many operations complete per unit of time? (X)
– Utilization (to maximize use of some device)

• What percentage of time does the CPU (and each device) spend
doing useful work? (U)
time-in-use / elapsed time

– Fairness
• What does this mean? Divide the pie evenly? Guarantee low

variance in response times? Freedom from starvation?
• Proportional sharing of resources

– Meet deadlines and guarantee jitter-free periodic tasks
• real time systems (e.g. process control, continuous media)

4

Multiprogramming and
Utilization

• Early motivation: Overlap of computation and I/O
• Determine mix and multiprogramming level with the goal

of “covering” the idle times caused by waiting on I/O.

Time −>

CPU I/O Gantt Chart

Context switch overheads

5

Classic Scheduling Algorithms
• SJF - Shortest Job First (provably optimal in

minimizing average response time, assuming we
know service times in advance)

• FIFO, FCFS
• Round Robin
• Multilevel Feedback Queuing
• Priority Scheduling (using priority queue data

structure)

6

Multilevel Feedback Queue
• Many systems (e.g., Unix variants) use a

multilevel feedback queue.
– multilevel. Separate queue for each of N priority levels.
– feedback. Factor previous behavior into new job

priority.

high

low

I/O bound jobs waiting for CPU

CPU-bound jobs

jobs holding resouces
jobs with high external priority

ready queues
indexed by priority

GetNextToRun selects job
at the head of the highest
priority queue.

constant time, no sorting

Priority of CPU-bound
jobs decays with system
load and service received.

7

Real Time Schedulers
• Real-time schedulers must support regular,

periodic execution of tasks (e.g., continuous
media).
– CPU Reservations

• “I need to execute for X out of every Y units.”
• Scheduler exercises admission control at reservation

time: application must handle failure of a reservation
request.

– Proportional Share
• “I need 1/n of resources”

– Time Constraints
• “Run this before my deadline at time T.”

8

Assumptions
• Tasks are periodic with constant interval

between requests, Ti (request rate 1/Ti)
• Each task must be completed before the

next request for it occurs
• Tasks are independent
• Run-time for each task is constant (max),

Ci

• Any non-periodic tasks are special

9

Task Model

time

✦1

✦2

Ti Ti

T2

C1 = 1

C2 = 1

10

Definitions
• Deadline is time of next request
• Overflow at time t if t is deadline of unfulfilled

request
• Feasible schedule - for a given set of tasks, a

scheduling algorithm produces a schedule so no
overflow ever occurs.

• Critical instant for a task - time at which a request
will have largest response time.
– Occurs when task is requested simultaneously with all

tasks of higher priority

11

Rate Monotonic

• Assign priorities to tasks according to their
request rates, independent of run times

• Optimal in the sense that no other fixed
priority assignment rule can schedule a task
set which can not be scheduled by rate
monotonic.

• If feasible (fixed) priority assignment exists for
some task set, rate monotonic is feasible for
that task set.

12

Earliest Deadline First
• Dynamic algorithm
• Priorities are assigned to tasks according to the

deadlines of their current request
• With EDF there is no idle time prior to an

overflow
• For a given set of m tasks, EDF is feasible iff

C1/T1 + C2/T2 + … + Cm/Tm [1
• If a set of tasks can be scheduled by any

algorithm, it can be scheduled by EDF

13

Linux Scheduling Policy
• Runnable process with highest priority and

timeslice remaining runs (SCHED_OTHER
policy)
– Dynamically calculated priority

• Starts with nice value
• Bonus or penalty reflecting whether I/O or compute

bound by tracking sleep time vs. runnable time:
sleep_avg and decremented by timer tick while
running

14

Linux Scheduling Policy
– Dynamically calculated timeslice

• The higher the dynamic priority, the longer the timeslice:

– Recalculated every round when “expired” and “active”
swap

– Exceptions for expired interactive
• Go back on active unless there are starving expired tasks

Low priority
less interactive

High priority
more interactive

10ms 150ms 300ms

15

.

.

.

.

.

.

Runqueue for O(1) Scheduler

active

expired

priority array

priority array

.

.

.

.

.

.

priority queue

priority queue

priority queue

priority queue

Higher priority
more I/O
300ms

lower priority
more CPU
10ms

16

.

.

.

.

.

.

Runqueue for O(1) Scheduler

active

expired

priority array

priority array

.

.

.

.

.

.

priority queue

priority queue

priority queue

priority queue

1
0

17

.

.

.

.

.

.

Runqueue for O(1) Scheduler

active

expired

priority array

priority array

.

.

.

.

.

.

priority queue

priority queue

priority queue

priority queue

1

0

X

X

18

Linux Real-time
• No guarantees
• SCHED_FIFO

– Static priority, effectively higher than
SCHED_OTHER processes*

– No timeslice – it runs until it blocks or yields
voluntarily

– RR within same priority level
• SCHED_RR

– As above but with a timeslice.

* Although their priority number ranges overlap

20

Support for SMP
• Every processor has its

own private runqueue
• Locking – spinlock

protects runqueue
• Load balancing – pulls

tasks from busiest
runqueue into mine.

• Affinity – cpus_allowed
bitmask constrains a
process to particular set of
processors

• load_balance runs from
schedule() when runqueue is
empty or periodically esp. during
idle.

• Prefers to pull processes from
expired, not cache-hot, high
priority, allowed by affinity

P P P P

Memory

$ $ $ $

Symmetric mp

21

Synchronization

22

The Trouble with Concurrency
in Threads...

Thread0 Thread1

Data: x

while(i<10)
{x=x+1;
i++;}

0

while(j<10)
{x=x+1;
j++;}

0 0i j

What is the value of x when both threads
leave this while loop?

23

Range of Answers
Process 0
LD x // x currently 0

Add 1
ST x // x now 1, stored over 9

Do 9 more full loops // leaving x at 10

Process1

LD x // x currently 0
Add 1
ST x // x now 1
Do 8 more full loops // x = 9

LD x // x now 1

Add 1
ST x // x = 2 stored over 10

24

Nondeterminism
• What unit of work can be

performed without
interruption? Indivisible or
atomic operations.

• Interleavings - possible
execution sequences of
operations drawn from all
threads.

• Race condition - final
results depend on ordering
and may not be “correct”.

while (i<10) {x=x+1; i++;}

load value of x into reg
yield()
add 1 to reg
yield ()
store reg value at x
yield ()

25

Reasoning about Interleavings
• On a uniprocessor, the possible execution

sequences depend on when context switches can
occur
– Voluntary context switch - the process or thread

explicitly yields the CPU (blocking on a system call it
makes, invoking a Yield operation).

– Interrupts or exceptions occurring - an asynchronous
handler activated that disrupts the execution flow.

– Preemptive scheduling - a timer interrupt may cause an
involuntary context switch at any point in the code.

• On multiprocessors, the ordering of operations on
shared memory locations is the important factor.

26

Critical Sections
• If a sequence of non-atomic operations must be

executed as if it were atomic in order to be correct,
then we need to provide a way to constrain the
possible interleavings in this critical section of our
code.
– Critical sections are code sequences that

contribute to “bad” race conditions.
– Synchronization needed around such critical

sections.
• Mutual Exclusion - goal is to ensure that critical

sections execute atomically w.r.t. related critical
sections in other threads or processes.
– How?

27

The Critical Section Problem
Each process follows this template:

while (1)
{ ...other stuff... //processes in here shouldn’t stop

others
enter_region();
critical section
exit_region();

}
The problem is to define enter_region and

exit_region to ensure mutual exclusion with some
degree of fairness.

28

Implementation Options for
Mutual Exclusion

• Disable Interrupts
• Busywaiting solutions - spinlocks

– execute a tight loop if critical section is busy
– benefits from specialized atomic (read-mod-write)

instructions

• Blocking synchronization
– sleep (enqueued on wait queue) while C.S. is busy

Synchronization primitives (abstractions, such as
locks) which are provided by a system may be
implemented with some combination of these
techniques.

29

Kernel Entry

Crossing Protection
Boundaries

• For a user to do something
"privileged", it must invoke an
OS procedure providing that
service. How?

• System Calls
– special trap instruction that

causes an exception which
vectors to a kernel handler

– parameters indicate which
system routine called

User / Kernel Modes
• Hardware support to

differentiate between what we'll
allow user code to do by itself
(user mode) and what we'll have
the OS do
(kernel mode).

• Mode indicated by status bit in
protected processor register.

• Privileged instructions can only
be executed in kernel mode (I/O
instructions).

• Protected memory space

User Programs

OS
Kernel

HW

Syscalls

Machine instructions

Interrupts and Exceptions
• Unnatural change in control flow
• Interrupt is external event

– devices: disk, network, keyboard, etc.
– clock for timeslicing
– These are useful events, must do something when they occur.

• Exception is potential problem with program
– segmentation fault
– bus error
– divide by 0
– Don’t want my bug to crash the entire machine
– page fault (virtual memory…)

• System calls leverage this mechanism

An Execution Context
• The state of the CPU associated with a thread of control

(process context)
– general purpose registers (integer and floating point)
– status registers (e.g., condition codes)
– program counter, stack pointer

• Kernel executes in process context during system calls
– Preemptible, kernel capable of sleeping
– Linux system calls must be reentrant

• Need to be able to switch between contexts
– better utilization of machine (overlap I/O of one process with

computation of another)
– timeslicing: sharing the machine among many processes

A System Call
Trap

Handler
System_call()

User Program

• Special Instruction to change
modes and invoke service

– read/write I/O device
– create new process

• Invokes specific kernel
routine based on argument

– Syscall # in eax register
• kernel defined interface

– Arguments passed in registers
• May return from trap to

different process --
schedule()

• instruction to return to user
process

Service
Routines

Kernel
ld

add
st

$0x80
beq
ld

sub
bne

Usual Path to Invoking
System Call

User space Kernel space

application C library
Syscall
handler

Service
routine

wrapper system_call()read(…) sys_read()

Role of Interrupts in I/O
So, the program needs to access an I/O device…

• Start an I/O operation (special instructions or
memory-mapped I/O)

• Device controller performs the operation
asynchronously (in parallel with) CPU processing
(between controller's buffer & device).

• If DMA, data transferred between controller's
buffer and memory without CPU involvement.

• Interrupt signals I/O completion when device is
done.

CPU handles Interrupt

• For each interrupt number, jumps to address
of appropriate interrupt service routine.
[do_IRQ()]

– Interrupt context

– Kernel stack of whatever was interrupted

– Can not sleep

• Handlers on this line do what needs to be
done. [handle_IRQ_event()]

– Unless SA_INTERRUPT specified when
registered, re-enable interrupts during
handler execution

– If line is shared, loop through all handlers

• Restores saved state at interrupted instruction
[ret_from_intr()],
returns to user mode.

ld
add
st

mul
beq
ld

sub
bne

do_IRQ()
handle_IRQ_event

Ret_from_intr()

User Program

Interrupt Handling

• Device raises interrupt line, CPU detects this, CPU stops current operation,
disables interrupts, enters kernel mode, saves current program counter, jumps
to predefined location, saves other processor state needed to continue at
interrupted instruction.

38

Interrupt Control
• local_irq_disable() and local_irq_enable() --

affecting all interrupts for this processor
• local_irq_save(…) and local_irq_restore(…) –

save and disable interrupts on this processor and
restore previous interrupt state

• disable_irq(irq), disable_irq_nosynch(irq),
enable_irq(irq) – affecting particular interrupt line

• Informational:
– irqs_disabled() – local interrupts disabled?
– in_interrupt() – in interrupt context or process context?
– In_irq() – executing an interrupt handler?

Bottom Half Processing
• Deferring work that is too heavyweight for interrupt

handling
• Mechanisms:

– Softirqs
“soft interrupts”, statically defined (32 max.) action functions that
can run concurrently on SMP
pending when bit set in 32-bitmask (usually set in associated
interrupt handler [raise_softirq()]
run with interrupts enabled, proper locking required

– Tasklets
dynamically created functions that are built upon softirqs,
two of the same type can not run concurrently
lists of tasklet_struct hooked to 2 of the softirqs

– Workqueue
implemented as kernel-based “worker” threads with process
context of their own -- thus allowed to sleep

