
1

Outline for Today
• Objectives:

– Interrupts (continued)
– Lottery Scheduling

• Announcements

Role of Interrupts in I/O
So, the program needs to access an I/O device…

• Start an I/O operation (special instructions or
memory-mapped I/O)

• Device controller performs the operation
asynchronously (in parallel with) CPU processing
(between controller's buffer & device).

• If DMA, data transferred between controller's
buffer and memory without CPU involvement.

• Interrupt signals I/O completion when device is
done.

CPU handles Interrupt

• For each interrupt number, jumps to address
of appropriate interrupt service routine.
[do_IRQ()]

– Interrupt context

– Kernel stack of whatever was interrupted

– Can not sleep

• Handlers on this line do what needs to be
done. [handle_IRQ_event()]

– Unless SA_INTERRUPT specified when
registered, re-enable interrupts during
handler execution

– If line is shared, loop through all handlers

• Restores saved state at interrupted instruction
[ret_from_intr()],
returns to user mode.

ld
add
st

mul
beq
ld

sub
bne

do_IRQ()
handle_IRQ_event

Ret_from_intr()

User Program

Interrupt Handling

• Device raises interrupt line, CPU detects this, CPU stops current operation,
disables interrupts, enters kernel mode, saves current program counter, jumps
to predefined location, saves other processor state needed to continue at
interrupted instruction.

4

Interrupt Control
• local_irq_disable() and local_irq_enable() --

affecting all interrupts for this processor
• local_irq_save(…) and local_irq_restore(…) –

save and disable interrupts on this processor and
restore previous interrupt state

• disable_irq(irq), disable_irq_nosynch(irq),
enable_irq(irq) – affecting particular interrupt line

• Informational:
– irqs_disabled() – local interrupts disabled?
– in_interrupt() – in interrupt context or process context?
– In_irq() – executing an interrupt handler?

Bottom Half Processing
• Deferring work that is too heavyweight for interrupt

handling
• Mechanisms:

– Softirqs
“soft interrupts”, statically defined (32 max.) action functions that
can run concurrently on SMP
pending when bit set in 32-bitmask (usually set in associated
interrupt handler [raise_softirq()]
run with interrupts enabled, proper locking required

– Tasklets
dynamically created functions that are built upon softirqs,
two of the same type can not run concurrently
lists of tasklet_struct hooked to 2 of the softirqs

– Workqueue
implemented as kernel-based “worker” threads with process
context of their own -- thus allowed to sleep

12

Lottery Scheduling
Waldspurger and Weihl (OSDI 94)

13

Claims
• Goal: responsive control over the relative rates of

computation
• Claims:

– Support for modular resource management
– Generalizable to diverse resources
– Efficient implementation of proportional-share

resource management: consumption rates of
resources by active computations are
proportional to relative shares allocated

14

Basic Idea
• Resource rights are represented by lottery

tickets
– abstract, relative (vary dynamically wrt

contention), uniform (handle heterogeneity)
– responsiveness: adjusting relative # tickets

gets immediately reflected in next lottery
• At allocation time: hold a lottery;

Resource goes to the computation holding
the winning ticket.

15

Fairness

• Expected resource allocation is proportional
to # tickets held - actual allocation becomes
closer over time.

• Throughput – Expected number of lotteries
won by client
E[w] = n p where p = t/T

• Response time -- # lotteries
to wait for first win
E[n] = 1/p

• No starvation

w # wins
t # tickets
T total # tickets
n # lotteries

16

Example List-based Lottery

10 2 5 1 2

T = 20

Random(0, 19) = 15

10 12 17Summing:

17

Bells and Whistles
• Ticket transfers - objects that can be explicitly passed

in messages
– Can be used to solve priority inversions

• Ticket inflation
– Create more - used among mutually trusting clients to

dynamically adjust ticket allocations
• Currencies - “local” control, exchange rates

• Compensation tickets - to maintain share with I/O
– use only f of quantum, ticket inflated by 1/f in next

18

Kernel Objects

1000
base

ticket

amount

currency
C_name

300

Backing
tickets

Issued tickets

Active
amount

Currency
name

19

base

alice bob

task1

task2
task3

thread2 thread3 thread4
thread1

3000

200

500

100

100

2000
base

1000
base

200
alice

200
task2

300
task2

100
task3

100
bob100

alice

100
task1

0

1 alice =
5 base

1 task2=
.4 alice =
2 base

1 bob =
20 base

20

base

alice bob

task1

task2
task3

thread2 thread3 thread4
thread1

3000

300

500

100

100

2000
base

1000
base

200
alice

200
task2

300
task2

100
task3

100
bob100

alice

100
task1

100

1 alice =
3.33 base

1 task2=
.4 alice =
1.33 base

1 bob =
20 base

21

Example List-based Lottery

10 task2 2bob 5 task3 1

base

2bob

T = 3000 base

Random(0, 2999) = 1500

22

Compensation
• A holds 400 base, B holds 400 base
• A runs full 100msec quantum,

B yields at 20msec
• B uses 1/5 allotted time

Gets 400/(1/5) = 2000 base at each
subsequent lottery for the rest of this
quantum
– a compensation ticket valued at 2000 - 400

23

Ticket Transfer
• Synchronous RPC between client and

server
• create ticket in client’s currency and send

to server to fund it’s currency
• on reply, the transfer ticket is destroyed

24

Control Scenarios
• Dynamic Control

Conditionally and dynamically grant tickets
Adaptability

• Resource abstraction barriers supported by
currencies. Insulate tasks.

25

UI
• mktkt, rmtkt, mkcur, rmcur
• fund, unfund
• lstkt, lscur, fundx (shell)

27

Relative Rate Accuracy

28

Fairness Over Time

29

Client-Server
Query Processing Rates

30

Controlling Video Rates

31

Insulation

32

Other Kinds of Resources
• Claim: can be used for any resource where

queuing is used
• Control relative waiting times for mutex locks.

– Mutex currency funded out of currencies of waiting
threads

– Holder gets inheritance ticket in addition to its own
funding, passed on to next holder (resulting from
lottery) on release.

• Space sharing - inverse lottery, loser is victim
(e.g. in page replacement decision, processor node
preemption in MP partitioning)

33

Lock Funding

Waiting thread
1

lock

1

Waiting thread
1

holding thread
1

t t

bt

34

Lock Funding

New holding thread

1

lock

1

Waiting thread
1

Old holding thread

1

t

bt

35

Mutex Waiting
Times

