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Outline

• Objectives
– Review of undergrad material w.r.t. memory 

management
– Linux details from ch 10,13 sprinkled along the 

way
• Administrative details

– Upcoming midterm (next Monday)

Review of Memory Management

• The traditional memory hierarchy,
the virtual memory abstraction.

• Hardware and software mechanisms to support the 
abstraction.

• Management policies.
• Where are the opportunities for current research?

The underlying assumptions that are changing.



2

3

Issues
• Exactly what kind of object is it that we need to load 

into memory for each process?
What is an address space?

• Multiprogramming was justified on the grounds of CPU 
utilization (CPU/IO overlap).  
How is the memory resource to be shared among all 
those processes we’ve created?

• What is the memory hierarchy? What is the OS’s role in 
managing levels of it?
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More Issues
• How can one address space be protected from 

operations performed by other processes?

• In the implementation of memory management, what 
kinds of overheads (of time, of wasted space, of the 
need for extra hardware support) are introduced?
How can we fix (or hide) some of these problems?
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Memory Hierarchy

func units

registers

Processor

$$
cache(s)

Main Memory* Secondary Storage*

Disk

Remote
memories

*not to scale

Airplane analogy:
Seat back pocket-
limited size and
granularity, 
immediate access Overhead bins-

bigger, not as convenient

Checked
baggage-
big but
limited
access

“CPU-DRAM gap” (CPS 104) “I/O bottleneck”
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From User Program to Executable

The executable file resulting 
from compiling your source 
code and linking with other 
compiled modules contains
– machine language 

instructions (as if addresses 
started at zero)

– initialized data
– how much space is required 

for uninitialized data

prog.c

compiler

prog.o libc

linker

prog
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Executable to User Address Space
• In addition to the code and 

initialized data that can be 
copied from executable file, 
addresses must be reserved for 
areas of uninitialized data and 
stack when the process is 
created

• When and how do the real
physical addresses get 
assigned?

code

init data

header logical addr space
0: 0:

N-1: stack

uninit data

lw r2, 42

jmp 6

symbol table

Kernel

Linux View of Memory
• Physical memory
• Kernel memory -- v.m. 

visible from kernel mode
– ZONE_DMA
– ZONE_NORMAL

1-to-1 mapped
– ZONE_HIGHMEM

explicitly mapped into 
address space

• User memory – visible 
from user mode
– ZONE_HIGHMEM

0GB

3GB

4GB

low
.9GB

User

remappable

virtual physical

high
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Allocation Mechanisms

• Acquiring regions of physical memory and 
mapping them (implicitly or explicitly) into the 
virtual address space

• Kernel allocators
– Page grained – alloc_pages and 
get_zeroed_page
kmap into kernel address space

– Sub-page-size – rtn logical addresses
• kmalloc – physical contiguous chunks
• vmalloc – virtually contiguous

Slab Allocator

• Creates cache of pre-allocated and recycled 
data structures.  Essentially free-lists of 
various kinds

• kmem_cache_alloc – gets an object of 
the appropriate type from the cache
– Inodes, task_structs, etc.
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Allocation to Physical Memory
addr space0

addr space1

0:

0:

A0-1:

Main Memory
0:

M-1:A1-1:

lw r2, 42

jmp 6

*binary 
rep of

Assume contiguous 
allocation

Static loading 
Partition memory 

variable (first, best 
fits)

Fragmentation 
(external)

Compaction
Swapping

12

lw r2, 42+N

jmp 6+N

Allocation to Physical Memory
addr space0

addr space1

0:

0:

A0-1:

Main Memory
0:

M-1:A1-1:

lw r2, 42

jmp 6

*binary 
rep of

Assume contiguous 
allocation

Static loading 
Partition memory 

variable (first, best 
fits)

Fragmentation 
(external)

Compaction
Swapping

N:

free
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lw r2, 42+K

jmp 6+K

Allocation to Physical Memory
addr space0

addr space1

0:

0:

A0-1:

Main Memory
0:

M-1:A1-1:

lw r2, 42

jmp 6

*binary 
rep of

Assume contiguous 
allocation

Static loading
Partition memory 

variable (first, best 
fits)

Fragmentation 
(external)

Compaction
Swapping

K:

free
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Paging
virtual addr space0

virtual addr space1

0:

0:

A0-1:

A1-1:
Non-contiguous
allocation - fixed size pages

frame
Physical Memory

page
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Paging
Dynamic address translation 

– another case of indirection (as 
“the answer”)

– TLB to speed up lookup 
(another case of caching as “the 
answer”)

VPN offset

29 013

address
translation

PFN

offset

+

00
virtual address

physical address{

Deliver exception to
OS if translation is not
valid and accessible in
requested mode.

Virtual Memory
• System-controlled movement up and down in the 

memory hierarchy.
• Can be viewed as automating overlays - the system 

attempts to dynamically determine which previously 
loaded parts can be replaced by parts needed now.

• It works only because of locality of reference.
• Often most closely associated with paging (needs non-

contiguous allocation, mapping table).
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Locality
• Only a subset of the program’s code and data are 

needed at any point in time. Can the OS predict what 
that subset will be (from observing only the past 
behavior of the program)?

• Temporal - Reuse. Tendency to reuse stuff accessed in 
recent history (code loops).

• Spatial - Tendency to use stuff near other recently 
accessed stuff (straightline code, data arrays). 
Justification for moving in larger chunks.
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Good & Bad Locality 

for (i = 0; i++; i<n)
for (j = 0; j++; j<m)

A[i, j] = B[i, j] 

for (j = 0; j++; j<m)
for (i = 0; i++; i<n)

A[i, j] = B[i, j] 

A[0,0] A[0,1]

A[1,0]

A[2,0] A[2,1]

A[1,1]
A[0,0] A[0,1] A[1,0] A[1,1] A[2,0] A[2,1]

Assume:
arrays laid
out in rows

Bad locality is a contributing 
factor in Thrashing (page 
faulting behavior dominates).
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Thrashing

• Page faulting is dominating 
performance

• Causes:
– Memory is overcommited - not 

enough to hold locality sets of all 
processes at this level of 
multiprogramming

– Lousy locality of their programs
– Positive feedback loops reacting 

to paging I/O rates

#frames

pa
ge

 fa
ul

t f
re

q.

1 N

• Load control is 
important (how many 
slices in frame pie?)
– LT/RT strategy (limit # 

processes in load phase)

enough frames

too few
frames

difference
between repl. algs

Questions for Paged Virtual 
Memory

1. How do we prevent users from accessing protected data?
2. If a page is in memory, how do we find it?

Address translation must be fast.
3. If a page is not in memory, how do we find it?
4. When is a page brought into memory?
5. If a page is brought into memory, where do we put it?
6. If a page is evicted from memory, where do we put it?
7. How do we decide which pages to evict from memory?

Page replacement policy should minimize overall I/O.
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Virtual Memory Mechanisms
• Hardware support - beyond dynamic address translation 

needed to support paging or segmentation (e.g., table lookup)
– mechanism to generate page fault on missing page.
– restartable instructions

• Software 
– Data to support replacement, fetch, and placement policies.
– Data structure for location in secondary memory of desired 

page.

Role of MMU Hardware and OS

• VM address translation must be very cheap (on average).
– Every instruction includes one or two memory references.

• (including the reference to the instruction itself)

• VM translation is supported in hardware by a Memory 
Management Unit or MMU.
– The addressing model is defined by the CPU architecture.
– The MMU itself is an integral part of the CPU.

• The role of the OS is to install the virtual-physical 
mapping and intervene if the MMU reports a violation.
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Paging
Dynamic address translation 

– another case of indirection (as 
“the answer”)

– TLB to speed up lookup 
(another case of caching as “the 
answer”)

VPN offset

29 013

address
translation

PFN

offset

+

00
virtual address

physical address{

Deliver exception to
OS if translation is not
valid and accessible in
requested mode.

24

Paging
Dynamic address translation 

through page table lookup
– another case of indirection (as 

“the answer”)
– TLB to speed up lookup 

(another case of caching as “the 
answer”)

VPN offset

29 013

PFN

offset

+

00
virtual address

physical address{

Deliver exception to
OS if translation is not
valid and accessible in
requested mode.

page table
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Alpha Page Tables (Forward Mapped)

21
10

POL3L2L1

base
+

10 10 13

+

+

PFN

seg 0/1

three-level page table
(forward-mapped)

sparse 64-bit address space
(43 bits in 21064 and 21164)

offset at each level is
determined by specific bits in VA

A Page Table Entry (PTE)

PFN

valid bit: OS sets this to tell MMU 
that the translation is valid.

write-enable: OS touches this to enable or 
disable write access for this mapping.

reference bit: set when a reference is 
made through the mapping.

dirty bit: set when a store is completed to the 
page (page is modified).

This is (roughly) what a MIPS page 
table entry (pte) looks like.
(translate.h in machine/)
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Inverted Page Table (HP, IBM)

• One PTE per page frame
– only one VA per physical 

frame

• Must search for virtual 
address

• More difficult to support
aliasing

• Force all sharing to use 
the same VA

Virtual page number Offset

VA      PA,ST

Hash Anchor Table (HAT)

Inverted Page Table (IPT)

Hash

Linux Page Table

• 3-levels
– pgd – page directory
– pmd – page middle 

directory
– pte – page table entries

pgd pmd pte
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Memory Management Unit 
(MMU)

• Input
– virtual address

• Output
– physical address
– access violation (exception, interrupts the processor)

• Access Violations
– not present
– user v.s. kernel
– write
– read
– execute

The OS Directs the MMU

• The OS controls the operation of the MMU to select:
(1) the subset of possible virtual addresses that are valid for each 

process (the process virtual address space);
(2) the physical translations for those virtual addresses;
(3) the modes of permissible access to those virtual addresses;

• read/write/execute
(4) the specific set of translations in effect at any instant.

• need rapid context switch from one address space to another

• MMU completes a reference only if the OS “says it’s OK”.
• MMU raises an exception if  the reference is “not OK”.
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The Translation Lookaside Buffer 
(TLB)

• An on-chip translation buffer (TB or TLB) caches recently 
used virtual-physical translations (ptes).

• Alpha 21164: 48-entry fully associative TLB.

• A CPU probes the TLB to complete over 95% of address 
translations in a single cycle.

• Like other memory system caches, replacement of TLB 
entries is simple and controlled by hardware.

• e.g., Not Last Used

• If a translation misses in the TLB, the entry must be 
fetched by accessing the page table(s) in memory.

• cost: 10-200 cycles

Care and Feeding of TLBs
The OS kernel carries out its memory management functions by 

issuing privileged operations on the MMU.
Choice 1: OS maintains page tables examined by the MMU.

MMU loads TLB autonomously on each TLB miss
page table format is defined by the architecture
OS loads page table bases and lengths into privileged memory management 

registers on each context switch.

Choice 2: OS controls the TLB directly.
MMU raises exception if the needed pte is not in the TLB.
Exception handler loads the missing pte by reading data structures 

in memory (software-loaded TLB).
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Hardware Managed TLBs

• Hardware Handles TLB 
miss

• Dictates page table 
organization

• Compilicated state 
machine to “walk page 
table”
– Multiple levels for 

forward mapped
– Linked list for inverted

• Exception only if access 
violation

Control

Memory

TLB

CPU

Software Managed TLBs

• Software Handles TLB 
miss

• Flexible page table 
organization

• Simple Hardware to detect 
Hit or Miss

• Exception if TLB miss or 
access violation

• Should you check for 
access violation on TLB 
miss?

Control

Memory

TLB

CPU
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Where Pages Come From

text
data
BSS

user stack
args/env

kernel

data

file volume
with

executable programs

Fetches for clean text 
or data are typically 
fill-from-file.

Modified (dirty) 
pages are pushed to 
backing store (swap) 
on eviction.

Paged-out pages are 
fetched from backing 
store when needed.

Initial references to user 
stack and BSS are satisfied 
by zero-fill on demand.

Questions for Paged Virtual 
Memory

1. How do we prevent users from accessing protected data?
2. If a page is in memory, how do we find it?

Address translation must be fast.
3. If a page is not in memory, how do we find it?
4. When is a page brought into memory?
5. If a page is brought into memory, where do we put it?
6. If a page is evicted from memory, where do we put it?
7. How do we decide which pages to evict from memory?

Page replacement policy should minimize overall I/O.
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Questions for Paged Virtual 
Memory

1. How do we prevent users from accessing protected data?
Indirection through MMU is the way to get to physical memory 
and the protection bits in the PTEs come into play.

2. If a page is in memory, how do we find it?
Address translation must be fast.

TLB 
3. If a page is not in memory, how do we find it?

A miss in the TLB and then an invalid mapping in the page table 
signify non-resident page - creating an exception (page fault)  
Another table will give location in backing store.

raise
exception

probe
page table

probe
TLB   

access
physical
memory

access
valid?

page
fault?

signal
process

allocate
frame

page on
disk?

fetch
from disk

zero-fillload
TLB

Virtual
Page #

MMU

OS

Completing a VM Reference

miss

hit
no

load
TLB

yes

yes

yes

no

access
valid?
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9
POL2L1Base of 

1st level table
as phys addr in
process state

+

11 12

+

+

PFN

Probe Page
Table

Could be
invalid -
page fault
for 2nd level

9
POL2L1

11 12

vpn pfn

Probe TLB

Addition

A Page Table Entry (PTE)

PFN

valid bit: OS sets this to tell MMU 
that the translation is valid.

write-enable: OS touches this to enable or 
disable write access for this mapping.

reference bit: set when a reference is 
made through the mapping.

dirty bit: set when a store is completed to the 
page (page is modified).

This is (roughly) what a MIPS page 
table entry (pte) looks like.
(translate.h in machine/)
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Questions for Paged Virtual 
Memory

1. How do we prevent users from accessing protected data?
2. If a page is in memory, how do we find it?

Address translation must be fast.
3. If a page is not in memory, how do we find it?
4. When is a page brought into memory?
5. If a page is brought into memory, where do we put it?
6. If a page is evicted from memory, where do we put it?
7. How do we decide which pages to evict from memory?

Page replacement policy should minimize overall I/O.

Policies for Paged Virtual Memory

The OS tries to minimize page fault costs incurred by all 
processes, balancing fairness, system throughput, etc.
(1) fetch policy: When are pages brought into memory?

• prepaging: reduce page faults by bring pages in before needed
• on demand: in direct response to a page fault.

(2) replacement policy: How and when does the system select victim 
pages to be evicted/discarded from memory?

(3) placement policy: Where are incoming pages placed? Which 
frame?

(4) backing storage policy:
• Where does the system store evicted pages?
• When is the backing storage allocated?
• When does the system write modified pages to backing store?
• Clustering: reduce seeks on backing storage
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Fetch Policy: Demand Paging
• Missing pages are loaded from disk into memory at 

time of reference (on demand).
The alternative would be to prefetch into memory in 
anticipation of future accesses (need good predictions).

• Page fault occurs because valid bit in page table entry 
(PTE) is off. The OS:
– allocates an empty frame* 
– initiates the read of the page from disk
– updates the PTE when I/O is complete
– restarts faulting process * Placement and possible

Replacement policies

Prefetching Issues
• Pro: overlap of disk I/O and computation on 

resident pages.  Hides latency of transfer.
– Need information

to guide predictions
• Con:  bad predictions

– Bad choice: a page that will never be referenced. 
– Bad timing: a page that is brought in too soon

Impacts:
– taking up a frame that would otherwise be free.
– (worse) replacing a useful page.
– extra I/O traffic

CPU

I/O

fault

Demand fetch Prefetch
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Placement Policy
Which free frame to chose?
Are all frames in physical memory created 

equal?
• Yes, only considering size.  Fixed size.
• No, if considering

– Cache performance, conflict misses
– Access to multi-bank memories
– Multiprocessors with distributed memories

2/22/2005 47

Page Replacement Policy
When there are no free frames available, the OS must 

replace a page (victim), removing it from memory to 
reside only on disk (backing store), writing the 
contents back if they have been modified since 
fetched (dirty).

Replacement algorithm - goal to choose the best 
victim, with the metric for “best” (usually) being to 
reduce the fault rate.
– FIFO, LRU, Clock, Working Set…

(defer to later)
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The Page Caching Problem 
(aka Replacement Policy)

• Each thread/process/job utters a stream of page references.
– Model execution as a page reference string: e.g., “abcabcdabce..”

• The OS tries to minimize the number of faults incurred.
– The set of pages (the working set) actively used by each job 

changes relatively slowly.
– Try to arrange for the resident set of pages for each active job to 

closely approximate its working set.

• Replacement policy is the key.
– Determines the resident subset of pages..
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Replacement Algorithms
Assume fixed number of frames in memory assigned to 

this process:
• Optimal - baseline for comparison - future references 

known in advance - replace page used furthest in 
future.

• FIFO
• Least Recently Used (LRU)

stack algorithm - don’t do worse with more memory.

• LRU approximations for implementation
Clock, Aging register
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LRU
• At fault time: replace the resident page that was last used the 

longest time ago
• Idea is to track the program’s temporal locality
• To implement exactly: we need to order the pages by time of 

most recent reference 
(per-reference information needed −> HW, too $$)
– timestamp pages at each ref,  stack operations at each ref

• Stack algorithm - doesn’t suffer from Belady’s anomaly -- if i > 
j then set of pages with j frames is a subset of set of pages with 
i frames.

LRU Approximations for Paging

• Pure LRU and LFU are prohibitively expensive to 
implement.
– most references are hidden by the TLB
– OS typically sees less than 10% of all references
– can’t tweak your ordered page list on every reference

• Most systems rely on an approximation to LRU for paging.
– periodically sample the reference bit on each page

• visit page and set reference bit to zero
• run the process for a while (the reference window)
• come back and check the bit again

– reorder the list of eviction candidates based on sampling
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Clock Algorithm

• Maintain a circular queue with a 
pointer to the next candidate 
(clock hand).

• At fault time: scan around the clock, 
looking for page with usage bit of zero 
(that’s your victim), 
clearing usage bits 
as they are passed.

• We now know whether or not a page 
has been used since the last time the 
bits were cleared

Newest

1st Candidate

Practical Considerations
• Dirty bit - modified pages require a writeback to 

secondary storage before frame is free to use 
again.

• Variation tries to maintain a healthy pool of clean, 
free frames
– on timer interrupt, scan for unused pages, move to free 

pool, initiate writeback on dirty pages
– at fault time, if page is still in frame in pool, reclaim; 

else take free, clean frame.
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The Paging Daemon
• Most OS have one or more system processes responsible 

for implementing the VM page cache replacement policy.
– A daemon is an autonomous system process that periodically 

performs some housekeeping task.

• The paging daemon prepares for page eviction before the 
need arises.
– Wake up when free memory becomes low.
– Clean dirty pages by pushing to backing store.

• prewrite or pageout
– Maintain ordered lists of eviction candidates.
– Decide how much memory to allocate to UBC, VM, etc.

FIFO with Second Chance 
(Mach)

• Idea: do simple FIFO replacement, but give pages a 
“second chance” to prove their value before they are 
replaced.
– Every frame is on one of three FIFO lists:

• active, inactive and free
– Page fault handler installs new pages on tail of active list.
– “Old” pages are moved to the tail of the inactive list.

• Paging daemon moves pages from head of active list to tail of inactive 
list when demands for free frames is high.

• Clear the refbit and protect the inactive page to “monitor” it.
– Pages on the inactive list get a “second chance”.

• If referenced while inactive, reactivate to the tail of active list.
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Illustrating FIFO-2C
active

list

inactive
list

free
list

Consume frames from the head of
the free list.

If free shrinks below threshhold, kick
the paging daemon to start a scan.

2. Page at head of inactive list has not 
been referenced? pmap_page_protect and 
place on tail of free list.

3. Dirty page on inactive list?  Push and 
return to inactive list tail.

Restock inactive list by pulling pages from
the head of the active list: knock off the
reference bit and inactivate.

Inactive list scan:
1. Page on inactive list has been referenced?  
Return to tail of active list (reactivation).

Paging daemon scans a few times per
second, even if not needed to restock free list.

Variable / Global Algorithms
• Not requiring each process to live 

within a fixed number of frames, 
replacing only its own pages.

• Can apply previously mentioned 
algorithms globally to victimize 
any  process’s pages

• Algorithms that make number of 
frames explicit.

si
ze

 o
f l

oc
al

ity
 se

t

time

transitions

stable
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Variable Space Algorithms
• Working Set

Tries to capture what the set of active pages currently is. The 
whole working set should be resident in memory for the process 
to bother running. WS is set of pages referenced during window 
of time (now-t, now).
– Working Set Clock - a hybrid approximation

• Page Fault Frequency
Monitor fault rate, if pff > high threshold, grow # frames 
allocated to this process, if pff < low threshold, reduce # frames.
Idea is to determine the right amount of memory to allocate.

Backing Store = Disk

text
data
BSS

user stack
args/env

kernel

data

file volume
with

executable programs

Fetches for clean text 
or data are typically 
fill-from-file.

Modified (dirty) 
pages are pushed to 
backing store (swap) 
on eviction.

Paged-out pages are 
fetched from backing 
store when needed.

Initial references to user 
stack and BSS are satisfied 
by zero-fill on demand.
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Rotational Media
SectorTrack

Cylinder

Head
Platter

Arm

Access time = seek time + rotational delay + transfer time
seek time = 5-15 milliseconds to move the disk arm and settle on a cylinder
rotational delay = 8 milliseconds for full rotation at 7200 RPM: average delay = 4 ms
transfer time = 1 millisecond for an 8KB block at 8 MB/s

Bandwidth utilization is less than 50% for any noncontiguous access at a block grain.

Layout issues: clustering

A Case for Large Pages
• Page table size is inversely proportional to the page size 

– memory  saved

• Transferring larger pages to or from secondary storage 
(possibly over a network) is more efficient

• Number of TLB entries are restricted by clock cycle time, 
– larger page size maps more memory
– reduces TLB misses
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A Case for Small Pages

• Fragmentation
– not that much spatial locality
– large pages can waste storage
– data must be contiguous within page

MMU Games

Vanilla Demand Paging
– Valid bit in PTE means non-resident page.  

Resulting page fault causes OS to initiate page 
transfer from disk.

– Protection bits in PTE means page should not 
be accessed in that mode (usually means 
non-writable)

What else can you do with them?
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A Page Table Entry (PTE)

PFN

valid bit: OS sets this to tell MMU 
that the translation is valid.

write-enable: OS touches this to enable or 
disable write access for this mapping.

reference bit: set when a reference is 
made through the mapping.

dirty bit: set when a store is completed to the 
page (page is modified).

Useful in forcing an exception!
Allows OS to regain control.

Simulating Usage Bits

• Turn off both valid bit and write-protect bit
• On first reference - fault allows recording the reference 

bit information by OS in an auxillary data structure.
Set it valid for subsequent accesses to go through HW.

• On first write attempt - protection fault allows recording 
the dirty bit information by OS in aux. data structure.

PFN

valid bit: OS sets this to tell MMU 
that the translation is valid.

write-enable: OS touches this to enable or 
disable write access for this mapping.
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Copy-on-Write

• Operating systems spend a lot of their time copying data.
– particularly Unix operating systems, e.g., fork()
– cross-address space copies are common and expensive

• Idea: defer big copy operations as long as possible, and 
hope they can be avoided completed.
– create a new shadow object backed by an existing object
– shared pages are mapped readonly in participating spaces

• read faults are satisfied from the original object (typically)
• write faults trap to the kernel

– make a (real) copy of  the faulted page
– install it in the shadow object with writes enabled

Things Change

• Myth that placement is irrelevant
• View that OS is concerned only with the 

main-secondary levels of memory hierarchy
• New architectures / new views of the 

memory “hierarchy”
• Scale - larger address spaces
• Workload assumptions

– New things to do with memory management
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Distributed Shared Memory 
(DSM)

Allows use of a shared memory programming 
model (shared address space) in a distributed 
system (processors with only local memory)

network
procproc

msg msg

mmu mmu

memmem

76

DSM Issues
• Can use the local memory management hardware to 

generate fault when desired page is not locally 
present or when write attempted on read-only copy.

• Locate the page remotely - current “owner” of page 
(last writer) or “home” for page.

• Page sent in message to requesting node (read 
access makes copy; write migrates)

• Consistency protocol - invalidations or broadcast of 
changes (update) 
– directory kept of caches holding copies
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DSM States

Forced faults are key to consistency operations
• Invalid local mapping, attempted read access -

data flushed from most recent writer, 
set write-protect bit for all copies.

• Invalid local mapping, attempted write access -
migrate data, invalidate all other copies.

• Local read-only copy, write-fault -
invalidate all other copies

78

Consistency Models
• Sequential consistency

– All memory operations appear to execute one at a time. A 
write is considered done only when invalidations or 
updates have propagated to all copies. 

• Weaker forms of consistency
– Guarantees associated with synchronization primitives; at 

other times, it doesn’t matter
– For example:

acquire lock - make sure others’ writes are done 
release lock - make sure all my writes are seen by others
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Example - the Problem

A = 0;

A = 1;

if (B == 0)
succ[0] = true;

B = 0;

B = 1;

if (A == 0)
succ[1] = true;

tim
e

(A==1 &
B==1)
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Example - Sequential Consistency

A = 0;

A = 1;

if (B == 0)
succ[0] = true;

B = 0;

B = 1;

if (A == 0)
succ[1] = true;

tim
e

B = 1 delayedA = 1 delayed
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Example - Weaker Consistency

A = 0;

A = 1;

acquire (mutex0);
if (B == 0)

succ[0] = true;
release (mutex0);

B = 0;

B = 1;

acquire (mutex1);
if (A == 0)

succ[1] = true;
release (mutex1);


