
Outline for Today
• Objectives:

– Time and Timers
• Administrative details:

– Talk on learning at 4 in 130 North Building
– Questions?

Uses of Time
• Coordinating events

– Synchronized clocks
• Measurements – durations of activities

– Stability – ability to maintain constant frequency
• Environmental factors (temperature) or age
• Synchronization protocols that adjust clock

• Driving periodic events
– Granularity (frequency)

• Scheduling dynamic events at a particular time in
the future.
– Accuracy
– Relative or absolute time?

Time Definitions
• Clock stability – how well it maintains a

constant frequency
– Short term – temperature
– Long term – aging of oscillator

• Clock accuracy – how well its frequency
and time compare with standard

Time Definitions
• Offset – time

difference
between 2 clocks

• Skew – frequency
difference
between 2 clocks

Timer Basics (Linux)
• Real time clock (RTC) keeps track of time even

when system is off – boot-time initialization
• System timer – provide periodic interrupts

– Programmable interrupt timer running at tick rate of HZ
frequency

• Time update (jiffies, wall clock time), do accounting (resource
usage), dispatch events that are due (dynamic timers),
rescheduling

– Jiffies – number of ticks since reboot
– Time of day

• xtime structure – contains seconds since Jan 1 1970; wall
clock time based on that.

• Delaying execution by looping udelay(us) or
sleeping schedule_timeout(s*HZ)

Dynamic Timers
• Created and destroyed dynamically
• Handler is run when tick count is >= expiration time.
• init_timer(&mytimer);
mytimer.expires = jiffies + delay;
mytimer.data = 0; //arg passed to handler
mytimer.function =myhandler;

• add_timer(&mytimer);

• Can change mod_timer or remove del_timer_sync
timers

• Timers are stored in buckets depending on how far into
the future they should expire.

• Run asynchronously with respect to other code – protect
shared data appropriately.

Soft Timers
Aron & Druschel

• Goal: to provide usec granularity events with low
overhead.
– Do not want timer interrupts at that granularity

• Approach: To leverage trigger points when
execution has already been interrupted –
amortize context switch and cache pollution
already incurred by other causes.
– End of syscall processing, end of exception handler,

end of executing interrupt handler, during CPU idle
loop

– Bounded overrun if a trigger point doesn’t happen –
backup hardware interrupt set

Accuracy

X = cycles/interrupt

Overhead

Timer costs with synthetic event handler
scheduled every 10usec

Synthetic event handler touches 50 cache lines, 2 instr cache lines

Trigger Occurrence

Trigger Sources

Impact of Trigger Sources
(ST-Apache)

Target Applications
• Rate-based clocking in the networking

system
– Schedule transmissions according to desired

rate
– If achieved rate falls below target, schedule to

allow maximal allowable burst
• Polling network interfaces

Naive Clock Synchronization

request

reply(timestamp)

timestamp=localclocklocalclock =
timestamp+rtt/2

How NTP works

• Multiple synchronization peers provide redundancy and diversity
• Clock filters select best from a window of eight clock offset samples
• Intersection and clustering algorithms pick best subset of servers

believed to be accurate and fault-free
• Combining algorithm computes weighted average of offsets for best

accuracy
• Phase/frequency-lock feedback loop disciplines local clock time and

frequency to maximize accuracy and stability

NTP Messages

Peer 1

Peer 2

Filter 1

Peer 3

Filter 2

Filter 3

Intersection
and

Clustering
Algorithms

Combining
Algorithm Loop Filter

VFO
Timestamps

P/F-Lock Loop

© Mills

