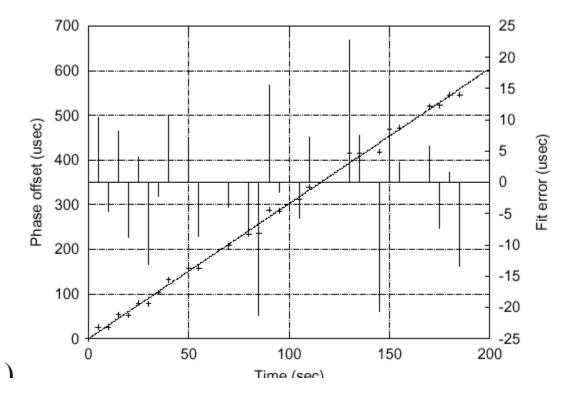
Outline for Today

- Objectives:
 - Time and Timers
- Administrative details:
 - Talk on learning at 4 in 130 North Building
 - Questions?

Uses of Time

- Coordinating events
 - Synchronized clocks
- Measurements durations of activities
 - Stability ability to maintain constant frequency
 - Environmental factors (temperature) or age
 - Synchronization protocols that adjust clock
- Driving periodic events
 - Granularity (frequency)
- Scheduling dynamic events at a particular time in the future.
 - Accuracy
 - Relative or absolute time?


Time Definitions

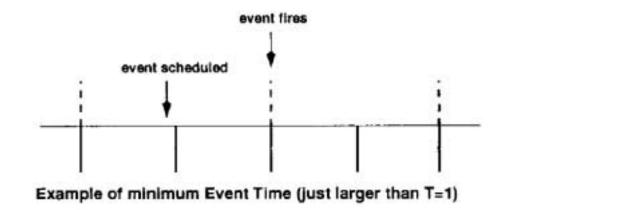
- Clock stability how well it maintains a constant frequency
 - Short term temperature
 - Long term aging of oscillator
- Clock accuracy how well its frequency and time compare with standard

Time Definitions

- Offset time difference between 2 clocks
- Skew frequency difference between 2 clocks

Timer Basics (Linux)

- Real time clock (RTC) keeps track of time even when system is off – boot-time initialization
- System timer provide periodic interrupts
 - Programmable interrupt timer running at tick rate of HZ frequency
 - Time update (jiffies, wall clock time), do accounting (resource usage), dispatch events that are due (dynamic timers), rescheduling
 - Jiffies number of ticks since reboot
 - Time of day
 - xtime structure contains seconds since Jan 1 1970; wall clock time based on that.
- Delaying execution by looping udelay(us) or sleeping schedule_timeout(s*HZ)


Dynamic Timers

- Created and destroyed dynamically
- Handler is run when tick count is >= expiration time.
- init_timer(&mytimer); mytimer.expires = jiffies + delay; mytimer.data = 0; //arg passed to handler mytimer.function =myhandler;
- add_timer(&mytimer);
- Can change mod_timer or remove del_timer_sync timers
- Timers are stored in buckets depending on how far into the future they should expire.
- Run asynchronously with respect to other code protect shared data appropriately.

Soft Timers Aron & Druschel

- Goal: to provide usec granularity events with low overhead.
 - Do not want timer interrupts at that granularity
- Approach: To leverage trigger points when execution has already been interrupted – amortize context switch and cache pollution already incurred by other causes.
 - End of syscall processing, end of exception handler, end of executing interrupt handler, during CPU idle loop
 - Bounded overrun if a trigger point doesn't happen backup hardware interrupt set

Accuracy

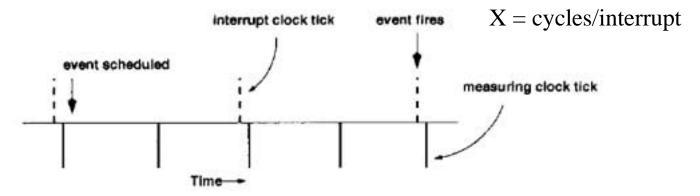


Fig. 1. Lower and upper bounds for event scheduling.

Overhead

Table I. Per-Event Timer Costs with Null Event Handler

	Alpha-500	8253/PII-300	8253/PIII-500	APIC/PIII-500	Soft Timers
Overhead (µsec)	8.64	4.45	4.36	0.8	≈0

	APIC/PIII-500	Soft Timers
Overhead (µsec)	5.1	3.5
Icache-misses (x10 ⁶)	153.2	149.7
Dcache-misses (x10 ⁶)	551.4	377.9
ITLB-misses (x10 ⁶)	18.25	17.00

Timer costs with synthetic event handler scheduled every 10usec

Synthetic event handler touches 50 cache lines, 2 instr cache lines

Trigger Occurrence

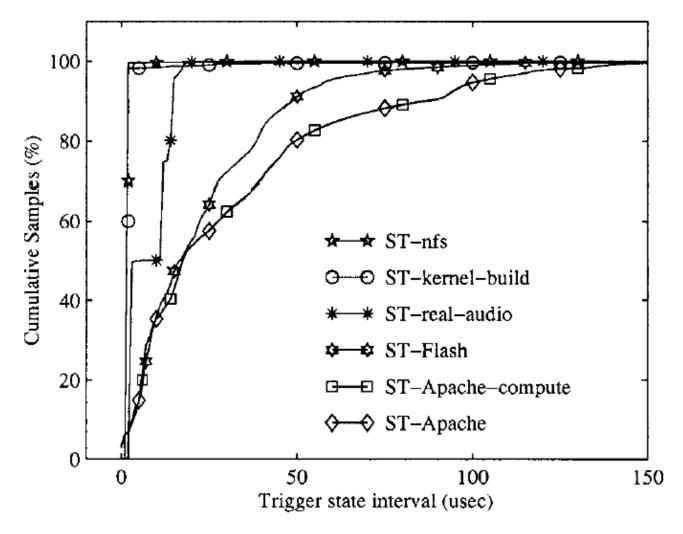
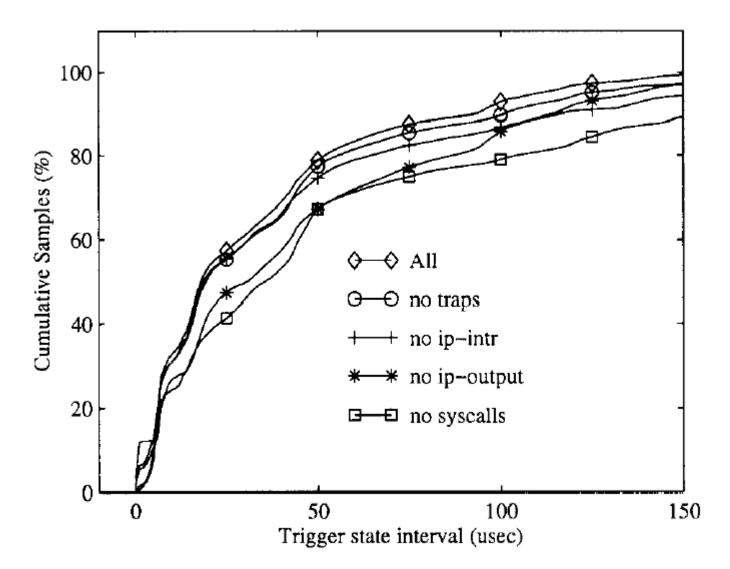
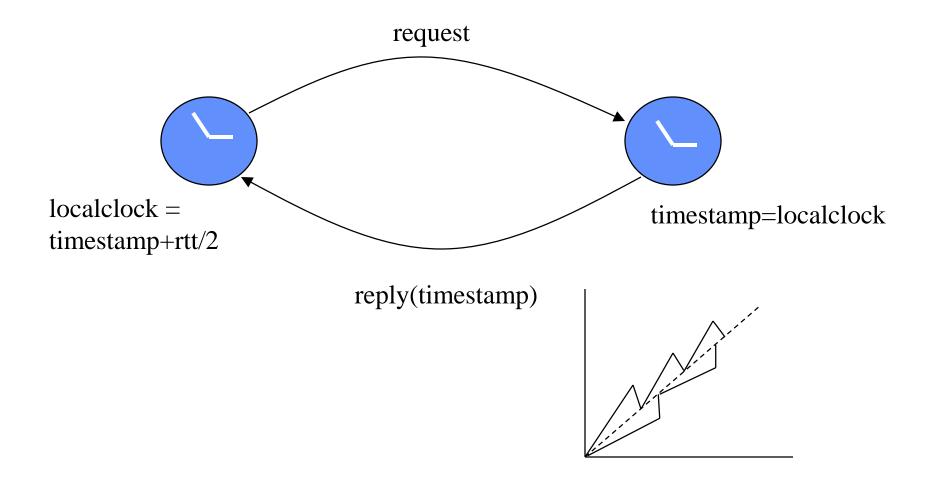
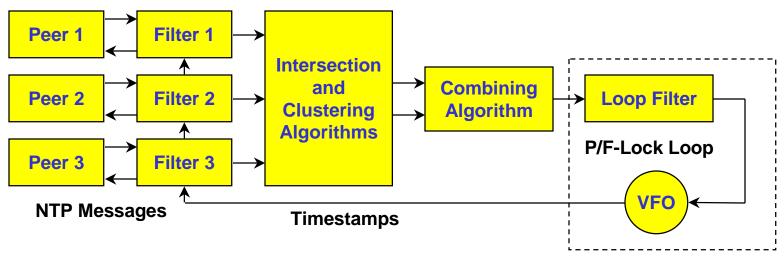



Fig. 2. Trigger state interval (CDF), 300MHz PII.

Trigger Sources

Table V.	Trigger State Sources	
Source	Fraction of samples (%)	
syscalls	47.7	
ip-output	28	
ip-intr	16.4	
tcpip-others	5.4	
traps	2.5	


Impact of Trigger Sources (ST-Apache)


Target Applications

- Rate-based clocking in the networking system
 - Schedule transmissions according to desired rate
 - If achieved rate falls below target, schedule to allow maximal allowable burst
- Polling network interfaces

Naive Clock Synchronization

How NTP works

- Multiple synchronization peers provide redundancy and diversity
- Clock filters select best from a window of eight clock offset samples
- Intersection and clustering algorithms pick best subset of servers believed to be accurate and fault-free
- Combining algorithm computes weighted average of offsets for best accuracy
- Phase/frequency-lock feedback loop disciplines local clock time and frequency to maximize accuracy and stability