Outline for Today

e Objectives:
— Time and Timers
 Administrative detalls:

— Talk on learning at 4 in 130 North Building
— Questions?

Uses of Time

Coordinating events
— Synchronized clocks

Measurements — durations of activities

— Stability — ability to maintain constant frequency
* Environmental factors (temperature) or age
e Synchronization protocols that adjust clock

Driving periodic events

— Granularity (frequency)

Scheduling dynamic events at a particular time in
the future.

— Accuracy

— Relative or absolute time?

Time Definitions

e Clock stability — how well it maintains a
constant frequency

— Short term — temperature
— Long term — aging of oscillator

e Clock accuracy — how well its frequency
and time compare with standard

f f f f
i L SEETp Lol R | ~ R

Titte Tine Time Time
atable but Mot stable and & ccurate but Stahle and
not accurate not accurate ot stable accurate

Time Definitions

e Offset — time
difference
between 2 clocks

« Skew — frequency
difference
between 2 clocks

700

600

500

400

300

Phase offset (usec)

200

100

0

25
1 20

415

110

1 -10

1-15

1 =20

50

100

Tirma (com

150

-25
200

Fit error (usec)

Timer Basics (Linux)

e Real time clock (RTC) keeps track of time even
when system is off — boot-time Initialization

o System timer — provide periodic interrupts

— Programmable interrupt timer running at tick rate of HZ
frequency

 Time update (jiffies, wall clock time), do accounting (resource
usage), dispatch events that are due (dynamic timers),
rescheduling

— Jiffles — number of ticks since reboot

— Time of day

e xtime structure — contains seconds since Jan 1 1970: wall
clock time based on that.

e Delaying execution by looping udel ay(us) or
sleeping schedul e t1 neout (s*HZ)

Dynamic Timers

Created and destroyed dynamically

Handler is run when tick count is >= expiration time.
Init _tinmer(&mytinmer),;

nytinmer.expires = jiffies + del ay;
nytinmer.data = 0; //arg passed to handl er
nytimer.function =nyhandl er;

add _tinmer(&mytiner),
Can change nod tiner orremovedel tiner_sync
timers

Timers are stored in buckets depending on how far into
the future they should expire.

Run asynchronously with respect to other code — protect
shared data appropriately.

Soft Timers
Aron & Druschel

e Goal: to provide usec granularity events with low
overhead.

— Do not want timer interrupts at that granularity

e Approach: To leverage trigger points when
execution has already been interrupted —
amortize context switch and cache pollution
already incurred by other causes.

— End of syscall processing, end of exception handler,
end of executing interrupt handler, during CPU idle
loop

— Bounded overrun if a trigger point doesn’t happen —
backup hardware interrupt set

Accuracy

avanl liras

avant schadulod 4

S R SR
|]

Example of minimum Event Time (just larger than T=1)

interrupt clock tick avenl fires X = CyC|ES/| nterrupt
eveni scheduled / 4
5 ' measuring clock tick

S B B

Time—=

Example of maximum Evant Tima (just amaller than T+X+1=4)

Fig. 1. Lower and upper bounds for event scheduling.

Overhead

Table I. Per-Event Timer Costs with Null Event Handler

Alpha-500 | 8253/P11-300

8253/PI11-500

APIC/PIII-500 | Soft Timers |

| Overhead (usec) %.64 4.45

4.36 0.8 T =0
APIC/PIII-500 | Soft Timers

Overhead (usec) 5.1 3.5

Icache-misses (x10°) 153.2 149.7

Dcache-misses (x10°) 551.4 377.9

ITLB-misses (x10°) 18.25 17.00

Timer costs with synthetic event handler
scheduled every 10usec

Synthetic event handler touches 50 cache lines, 2 instr cache lines

Trigger Occurrence

100
g 8o
9
(-
E 60t
fﬁ Yr—r ST—nfs
5 O—O ST—kemel-build
é 40+ ¥—# ST-real-audio
> %— ST—Flash

20+ G—8 ST-Apache—compute]

| G— ST-Apache
D [

0 50 100
Trigger state interval (usec)

Fig. 2. Trigger state interval (CDF), 300MHz PII.

150

Trigger Sources

Table V. Trigger State Sources

Source Fraction of samples (%)
syscalls 47.7
ip-output 28
ip-intr 16.4
tcpip-others 5.4
traps 2.5

Impact of Trigger Sources
(ST-Apache)

100

% 80

o

&

g 60}

o

Q

= G—© no traps

S 401 .

5 +—+ no 1p~intr

~ ¥—¥ no ip~output
20 E—+& no syscalls

0

0 50 100 150
Trigger state interval (usec)

Target Applications

* Rate-based clocking in the networking
system

— Schedule transmissions according to desired
rate

— If achieved rate falls below target, schedule to
allow maximal allowable burst

e Polling network interfaces

Naive Clock Synchronization

reguest
localclock = _/ timestamp=local clock
timestamp+rtt/2

reply(timestamp))

How NTP works

NTP Messages Timestamps

Peer 1 g Filter 1 >
) A Intersection A :
> - and > Combining | ' . |
Peer 2 < Filter 2 *| Clustering e > Loop Filter |
A Algorithms E :
> i P/F-Lock Loop |
Peer 3 Filter 3 > ! !
f e s

@%—

« Multiple synchronization peers provide redundancy and diversity
o Clock filters select best from a window of eight clock offset samples

» Intersection and clustering algorithms pick best subset of servers
believed to be accurate and fault-free

« Combining algorithm computes weighted average of offsets for best
accuracy

* Phase/frequency-lock feedback loop disciplines local clock time and
frequency to maximize accuracy and stability

© Mills

