
Dynamic Voltage Scaling

CPU can run at different clock frequencies/voltage:
• Voltage scalable processors

• StrongARM SA-2 (500mW at 600MHz; 40mW at 150MHz)

• Intel Xscale
• AMD Mobile K6 Plus
• Transmeta

• Power is proportional to V2 x F
• Energy will be affected

(+) by lower power,
(-) by increased time

Dynamic Voltage Scheduling

Questions addressed by the scheduler:
• Which process to run
• When to run it
• How long to run it for
• How fast to run the CPU while it runs
Intuitive goal - fill “soft idle” times with slow computation

Background Work in DVS

• Interval scheduling
• Based on observed processor utilization
• “general purpose” -- no deadlines assumed by the

system
• Predicting patterns of behavior to squeeze out idle

times.

• Worst-case real-time schedulers (Earliest Deadline
First)
• Stretch the work to smoothly fill the period without

missing deadlines (without inordinate transitioning).

Interval Scheduling
(adjust clock based on past window,

no process reordering involved)

Weiser et. al.
• Algorithms (when):

• Past
• AVGN

• Stepping (how much)
• One
• Double
• Peg – min or max

• Based on unfinished
work during previous
interval

time

C
PU

 lo
ad

C
lo

ck
 sp

ee
d

Implementation of Interval
Scheduling Algorithms

Issues:
• Capturing utilization measure

• Start with no a priori information about applications and
need to dynamically infer / predict behavior
(patterns / “deadlines” / constraints?)

• Idle process or “real” process – usually each quantum is
either 100% idle or busy

• AVGN: weighted utilization at time t
Wt = (NWt-1 + Ut-1) / (N+1)

• Inelastic performance constraints – don’t want to allow
user to see any performance degradation

Results

• It is hard to find any discernible patterns in “real”
applications
• Better at larger time scales (corresponding to larger windows

in AVGN) but then systems becomes unresponsive
• Poor coupling between adaptive decisions of applications

themselves and system decision-making (example: MPEG
player that can either block or spin)

• NEED application-supplied information

• Simple averaging shows asymmetric behavior – clock
rate drops faster than ramps up

• AVGN may not stabilize on the “right” clock speed -
Oscillations

Earliest Deadline First

Dynamic algorithm
Priorities are assigned to tasks according to the deadlines

of their current request
With EDF there is no idle time prior to an overflow
For a given set of m tasks, EDF is feasible iff

C1/T1 + C2/T2 + … + Cm/Tm [1
If a set of tasks can be scheduled by any algorithm, it can

be scheduled by EDF

Intuition

time

✦1

✦2

Ti Ti

T2

C1 = 1

C2 = 1

time

✦1

✦2

Ti Ti

T2

C1 = 1

C2 = 1

Intuition

EDF-based DVS Algorithm

Sort in EDF order
Invoked when thread added or removed or deadline

reached
Includes non-runnable in scheduling decision

speed = MAX

✟ workj

deadlinei-currenttime
j<=i

i<=n

Exponential
moving average

Relationships

Power (watts) = Voltage (volts) * Current (amps)

Power (watts) = Energy (Joules) / Time (sec)

Energy (Joules) = Power (watts) * Time (sec)

Energy (Joules) = Voltage (volts) * Charge (coulombs)

Current (amps) = Voltage (volts) / Resistance (ohms)

