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Abstract. In an earlier paper, we introduced a new “boosting”
algorithm called AdaBoost which, theoretically, can be used to
significantly reduce the error of any learning algorithm that con-
sistently generates classifiers whose performanceis a little better
than random guessing. We also introduced the related notion of a
“pseudo-loss” which is a method for forcing alearning algorithm
of multi-label conceptsto concentrateonthelabelsthat are hardest
to discriminate. In this paper, we describe experiments we carried
out to assess how well AdaBoost with and without pseudo-loss,
performs on real learning problems.

We performed two setsof experiments. Thefirst set compared
boosting to Breiman’s “bagging” method when used to aggregate
various classifiers (including decision trees and single attribute-
value tests). We compared the performance of the two methods
on a collection of machine-learning benchmarks. In the second
set of experiments, we studied in more detail the performance of
boosting using a nearest-neighbor classifier on an OCR problem.

1 INTRODUCTION

“Boosting” is a genera method for improving the perfor-
mance of any learning algorithm. In theory, boosting can be
used to significantly reducetheerror of any “weak” learning
algorithmthat consi stently generates classifiers which need
only be alittle bit better than random guessing. Despite
the potential benefits of boosting promised by the theoret-
ical results, the true practical value of boosting can only
be assessed by testing the method on real machine learning
problems. In this paper, we present such an experimental
assessment of a new boosting agorithm called AdaBoost.
Boosting works by repeatedly running a given weak?
learning algorithm on various distributions over the train-
ing data, and then combining the classifiers produced by
the weak learner into a single composite classifier. The
first provably effective boosting al gorithms were presented
by Schapire [20] and Freund [9]. More recently, we de-
scribed and analyzed AdaBoost, and we argued that this
new boosting algorithm has certain properties which make
it more practical and easier to implement than its prede-
cessors [10]. This agorithm, which we used in al our
experiments, is described in detail in Section 2.
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!We use the term “weak” learning algorithm, even though, in
practice, boosting might be combined with a quite strong learning
algorithm such as C4.5.

This paper describes two distinct sets of experiments.
In the first set of experiments, described in Section 3, we
compared boosting to “bagging,” a method described by
Breiman [1] which worksin the same general fashion (i.e.,
by repeatedly rerunning a given weak learning algorithm,
and combining the computed classifiers), but which con-
structseach distributionin asimpler manner. (Detailsgiven
below.) We compared boosting with bagging because both
methods work by combining many classifiers. This com-
parison alows us to separate out the effect of modifying
the distribution on each round (which isdonedifferently by
each a gorithm) fromtheeffect of voting multipleclassifiers
(which is done the same by each).

In our experiments, we compared boosting to bagging
using a number of different weak learning agorithms of
varying levels of sophistication. These include: (1) an
algorithm that searches for very simple prediction rules
which test on asingle attribute (similar to Holte' svery sm-
ple classification rules[14]); (2) an algorithm that searches
for a single good decision rule that tests on a conjunction
of attribute tests (smilar in flavor to the rule-formation
part of Cohen’s RIPPER algorithm [3] and Furnkranz and
Widmer's IREP agorithm [11]); and (3) Quinlan’s C4.5
decision-treeagorithm[18]. We tested these a gorithmson
acollection of 27 benchmark learning problemstaken from
the UCI repository.

The main conclusion of our experiments is that boost-
ing performs significantly and uniformly better than bag-
ging when the weak learning algorithm generates fairly
simple classifiers (algorithms (1) and (2) above). When
combined with C4.5, boosting till seems to outperform
bagging dightly, but the results are less compelling.

We a so found that boosting can be used with very sim-
plerules(algorithm (1)) to construct classifiersthat arequite
good relative, say, to C4.5. Kearnsand Mansour [16] argue
that C4.5 can itself be viewed as a kind of boosting ago-
rithm, so a comparison of AdaBoost and C4.5 can be seen
asacomparison of two competing boosting a gorithms. See
Dietterich, Kearns and Mansour’s paper [4] for more detail
on this paint.

In the second set of experiments, we test the perfor-
mance of boosting on anearest neighbor classifier for hand-
written digit recognition. In this case the weak learning
algorithmisvery simple, and thislets us gain some insight
into the interaction between the boosting a gorithm and the



nearest neighbor classifier. We show that the boosting al-
gorithm is an effective way for finding a small subset of
prototypesthat performsalmost aswell as the compl ete set.
We also show that it compares favorably to the standard
method of Condensed Nearest Neighbor [13] intermsof its
test error.

There seem to be two separate reasons for theimprove-
ment in performance that is achieved by boosting. Thefirst
and better understood effect of boostingisthat it generatesa
hypothesiswhose error on the training set issmall by com-
bining many hypotheseswhose error may be large (but still
better than random guessing). It seemsthat boostingmay be
helpful onlearning problems having either of thefollowing
two properties. The first property, which holds for many
real-world problems, is that the observed examples tend to
have varying degrees of hardness. For such problems, the
boosting a gorithm tends to generate distributionsthat con-
centrate on the harder examples, thus challenging the weak
learning algorithm to perform well on these harder parts of
the sample space. The second property is that the learning
algorithm be sensitive to changes in the training examples
so that significantly different hypotheses are generated for
different training sets. In this sense, boosting is similar to
Breiman’s bagging [1] which performs best when the weak
learner exhibits such “unstable’ behavior. However, unlike
bagging, boosting tries actively to force the weak learning
algorithm to change its hypotheses by changing the distri-
bution over the training examples as afunction of theerrors
made by previously generated hypotheses.

The second effect of boosting hasto do with variancere-
duction. Intuitively, taking a weighted mgjority over many
hypotheses, al of which were trained on different samples
taken out of the same training set, has the effect of re-
ducing the random variability of the combined hypothesis.
Thus, like bagging, boosting may have the effect of produc-
ing a combined hypothesis whose variance is significantly
lower than those produced by the wesk |earner. However,
unlike bagging, boosting may aso reduce the bias of the
learning algorithm, as discussed above. (See Kong and Di-
etterich [17] for further discussion of the bias and variance
reducing effects of voting multiple hypotheses, as well as
Breiman's [2] very recent work comparing boosting and
bagging in terms of their effects on bias and variance)) In
our first set of experiments, we compare boosting and bag-
ging, and try to use that comparison to separate between the
bias and variance reducing effects of boosting.

Previous work. Drucker, Schapire and Simard [8, 7]
performed thefirst experiments using aboosting a gorithm.
They used Schapire' s[20] original boosting algorithm com-
bined with a neura net for an OCR problem. Follow-
up comparisons to other ensemble methods were done by
Drucker et a. [6]. More recently, Drucker and Cortes [5]
used AdaBoost with a decision-tree algorithm for an OCR
task. Jackson and Craven [15] used AdaBoost to learn
classifiers represented by sparse perceptrons, and tested the
algorithm on a set of benchmarks. Finally, Quinlan [19]
recently conducted an independent comparison of boosting
and bagging combined with C4.5 on a collection of UCI
benchmarks.

Algorithm AdaBoost.M 1
Input: sequenceof m examples{(z1, y1), .- .
withlabelsy; € Y = {1,...,k}
weak learning algorithm WeakL earn
integer 1" specifying number of iterations
Initialize D1(¢) = 1/m for al .
Dofort=1,2,...,T:
1. Call WeakL earn, providing it with the distribution D,.
2. Get back ahypothesish; : X — Y.

3. Calculatetheerror of hs: € = Z

thi(z;)#y;
If e, > 1/2,thenset T = ¢ — 1 and abort loop.

) (Zm, ym)>

Dy(1).

4. Setﬁt = Et/(l — Gt).
5. Updatedistribution D.:
o Di(d) Be  ifhe(z:) = s
Din(i) = =72 X1 1 otherwise

where Z; is anormalization constant (chosen so that D41
will be adistribution).
Output the final hypothesis:

1
hfin(z) = > log =
fin() = argmax o9 5.

tthi(z)=y
Figure 1: The algorithm AdaBoost.M 1.
2 THEBOOSTING ALGORITHM

In this section, we describe our boosting a gorithm, called
AdaBoost. Seeour earlier paper [10] for more detail sabout
the agorithm and its theoretical properties.

We describe two versions of the algorithm which we
denote AdaBoost.M1 and AdaBoost.M2. The two ver-
sions are equivaent for binary classification problems and
differ only in their handling of problems with more than
two classes.

21 ADABOOST.M1

We begin with the simpler version, AdaBoost.M1. The
boosting a gorithm takes as input a training set of m exam-
plesS = ((z1,y1), - .., (Zm, Ym)) Where z; isan instance
drawn from some space X and represented in some man-
ner (typicaly, a vector of attribute values), and y; € Y is
the class label associated with z;. In this paper, we al-
ways assume that the set of possible labels Y is of finite
cardindity k.

In addition, the boosting a gorithm has access to another
unspecified learning agorithm, caled the wesak learning
algorithm, which is denoted generically as WeakL earn.
The boosting algorithm calls WeakL earn repeatedly in
a series of rounds. On round ¢, the booster provides
WeakL earn with a distribution D; over the training set
S. In response, WeakL earn computes a classifier or hy-
pothesis h; : X — Y which should correctly classify
a fraction of the training set that has large probability
with respect to D;. That is, the weak learner’s goal is
to find ahypothesis h; which minimizesthe (training) error
€: = Prinp, [h:(2i) # yi|. Notethat thiserror is measured
with respect to the distribution D; that was provided to the
weak learner. This process continuesfor 7" rounds, and, at
last, the booster combines theweak hypotheses by, . . ., hp
into asinglefinal hypothesish ;.



Algorithm AdaBoost.M2
Input: sequenceof m examples{(z1, y1), .- .
withlabelsy; € Y = {1,...,k}
weak learning algorithm WeakL earn
integer 1" specifying number of iterations
Let B={(s,y):1€{L,....,m},y #ui}
Initialize D1(3, y) = 1/|B| for (i, y) € B.
Dofort=1,2,...,T
1. Call WeakL earn, providing it with mislabel distribution D, .
2. Get back ahypothesisk; : X x Y — [0,1].
3. Calculate the pseudo-lossof A;:

=1 3 Dili,u) (1= he(wi, i) + he(as,v).

) (Zm, ym)>

(i,y)eB
4. Setﬁt = Et/(l — Et).
5. Update D;:
Dega(i,y) = D(1, y) .551/2)(1+ht(‘r17y1)_ht($17y))

Z
where Z; isa norrﬁdization constant (chosen so that D41
will be adistribution).
Output the final hypothesis:

T
hote) = agmax S (1092 ) (o)
t=1

Figure 2: The algorithm AdaBoost.M 2.

Still unspecified are: (1) the manner in which D, is
computed on each round, and (2) how hp, is computed.
Different boosting schemes answer these two questionsin
different ways. AdaBoost.M 1 uses the simple rule shown
inFigurel. Theinitial distribution D; isuniformover S so
D4(i) = 1/m for al i. Tocompute distribution D;.1 from
D, and the last weak hypothesis b, we multiply the weight
of example ¢ by some number 3; € [0, 1) if h; classifies z;
correctly, and otherwise the weight is left unchanged. The
weights are then renormalized by dividing by the normal-
ization constant 7,. Effectively, “easy” examples that are
correctly classified by many of the previousweak hypothe-
ses get lower weight, and “hard” exampleswhichtend often
to be misclassified get higher weight. Thus, AdaBoost fo-
cuses the most weight on the examples which seem to be
hardest for WeakL earn.

The number 3, is computed as shown inthe figure as a
function of ¢;. Thefina hypothesishg, isaweighted vote
(i.e., aweighted linear threshold) of the weak hypotheses.
That is, for agiven instance z, h g, outputsthe label y that
maximizes the sum of the weights of the weak hypotheses
predictingthat |abel. Theweight of hypothesish isdefined
tobelog(1/ ;) so that greater weight isgiven to hypotheses
with lower error.

Theimportant theoretical property about AdaBoost.M 1
is stated in thefollowing theorem. Thistheorem shows that
if the weak hypotheses consistently have error only dightly
better than 1/2, then thetraining error of thefina hypothesis
hpn drops to zero exponentialy fast. For binary classifi-
cation problems, this means that the weak hypotheses need
be only dightly better than random.

Theorem 1 ([10]) Suppose the weak learning algorithm
WeakL earn, when called by AdaBoost.M 1, generates hy-
potheses with errors ¢y, . . ., ep, where ¢; is as defined in
Figure 1. Assume each ¢; < 1/2,and let y; = 1/2 — ¢;.

Then the following upper bound holds on the error of the
final hypothesis hsp:

[{i: hiin(z:) # yi }| < T 1— 42 < ex ( d 2)
< —dyp <exp| -2 t -
n Hyr=o 20

Theorem 1 implies that the training error of the fina hy-
pothesis generated by AdaBoost.M1 is small. This does
not necessarily imply that the test error is small. However,
if theweak hypothesesare “simple” and 7" “not too large,”
then the difference between the training and test errors can
also be theoretically bounded (see our earlier paper [10] for
more on this subject).

The experiments in this paper indicate that the theoreti-
cal bound on the training error is often weak, but generally
correct qualitatively. However, the test error tends to be
much better than the theory would suggest, indicating a
clear defect in our theoretical understanding.

The main disadvantage of AdaBoost.M1 is that it is
unable to handle weak hypotheses with error greater than
1/2. The expected error of a hypothesis which randomly
guesses the label is 1 — 1/k, where k is the number of
possiblelabels. Thus, for k = 2, theweak hypotheses need
to be just dightly better than random guessing, but when
k > 2, the requirement that the error be less than 1/2 is
quite strong and may often be hard to meet.

2.2 ADABOOST.M2

The second version of AdaBoost attempts to overcome
thisdifficulty by extending the communi cation between the
boosting agorithm and the weak learner. First, we alow
the weak |learner to generate more expressive hypotheses,
which, rather than identifying a single label in Y, instead
choose a set of “plausible’ labels. This may often beeasier
than choosing just one label. For instance, in an OCR
setting, it may be hard to tdl if a particular image is “7”
or a“9”, but easy to eliminate all of the other possibilities.
In this case, rather than choosing between 7 and 9, the
hypothesis may output the set {7,9} indicating that both
labels are plausible.

We also alow the wesk learner to indicate a “ degree of
plausibility.” Thus, each weak hypothesis outputs a vector
[0, 1]*, where the components with values close to 1 or
0 correspond to those labels considered to be plausible or
implausible, respectively. Note that thisvector of valuesis
not a probability vector, i.e., the components need not sum
to one.?

While we give the weak learning algorithm more ex-
pressive power, we a so place a more complex requirement
on the performance of the weak hypotheses. Rather than
using the usual prediction error, we ask that the weak hy-
potheses do well with respect to a more sophisticated error
measure that we call the pseudo-loss. Unlikeordinary error
which iscomputed with respect to adistributionover exam-
ples, pseudo-lossis computed with respect to adistribution

2We deliberately use the term “plausible” rather than “prob-
able” to emphasize the fact that these numbers should not be
interpreted as the probability of a given label.



over the set of al pairs of examples and incorrect labels.
By manipulating this distribution, the boosting agorithm
can focus the weak learner not only on hard-to-classify ex-
amples, but more specificaly, on the incorrect labels that
are hardest to discriminate. We will see that the boosting
algorithm AdaBoost.M 2, which is based on these idess,
achieves boosting if each weak hypothesis has pseudo-loss
dightly better than random guessing.

More formally, a mislabel is a pair (i,y) where i is
the index of a training example and y is an incorrect label
associated with example i. Let B be the set of all mida
bels: B ={({,y) :i € {1,...,m},y # y; }. A mislabel
distribution is a distribution defined over the set B of all
mislabels.

On each round ¢ of boosting, AdaBoost.M 2 (Figure 2)
supplies the weak learner with a midabel distribution D, .
In response, the weak learner computes a hypothesish; of
theformh; : X x Y — [0,1]. Thereis no restriction on
>y he(2,y). In particular, the prediction vector does not
have to define a probability distribution.

Intuitively, we interpret each mislabel (i, y) as repre-
senting a binary question of the form: “Do you predict
that the label associated with example z; is y; (the correct
label) or y (one of the incorrect labels)?”  With this in-
terpretation, the weight D, (4, y) assigned to this mislabel
represents the importance of distinguishing incorrect label
y on example z;.

A weak hypothesish; istheninterpretedinthefollowing
manner. If hy(z;,y;) = 1 and hy(x;,y) = 0, then hy has
(correctly) predicted that z;'s label is y;, not y (since hy
deems y; to be“plausible’” and y “implausible’). Similarly,
if he(z;, y;) = 0andhy(z;, y) = 1,thenh, has(incorrectly)
made the opposite prediction. If A, (z;,y:) = he(zs, v),
then h,’s prediction istaken to be arandom guess. (Vaues
for h; in (0, 1) areinterpreted probabilistically.)

Thisinterpretation leads us to define the pseudo-loss of
hypothesis h; with respect to midabel distribution D; by
theformula

=3 Y. Di(i,9) (1= hu(wi,v0) + he(wi,y)).-
(t,y)eB

Space limitationsprevent usfrom giving acomplete deriva-
tionof thisformulawhichisexplainedindetail inour earlier
paper [10]. It can be verified though that the pseudo-loss
is minimized when correct labels y; are gned the value
1 and incorrect labels y # y; assigned the value 0. Fur-
ther, note that pseudo-loss 1/2 istrivialy achieved by any
congtant-valued hypothesis h;.

The weak learner’s goal is to find a weak hypothesis
h; with small pseudo-loss. Thus, standard “off-the-shelf”
learning a gorithmsmay need some modification to be used
in this manner, athough this modification is often straight-
forward. After receiving h;, themislabel distributionis up-
dated using arule similar to theone used in AdaBoost.M 1.
The fina hypothesis hg, outputs, for a given instance z,
the label y that maximizes a weighted average of the weak
hypothesisvaues h;(z, y).

Thefollowing theorem givesabound on thetraining er-
ror of the final hypothesis. Note that thistheorem requires

only that the weak hypotheses have pseudo-loss less than
1/2,i.e., only dlightly better than atrivia (constant-val ued)
hypothesis, regardless of the number of classes. Also, al-
thoughtheweak hypothesesh; are eval uated with respect to
the pseudo-loss, we of course evaluate the final hypothesis
hpn using the ordinary error measure.

Theorem 2 ([10]) Suppose the weak learning algorithm
WeakL earn, when called by AdaBoost.M 2 generates hy-
potheses with pseudo-losses ¢y, . . ., ep, where ¢, is as de-

fined in Figure 2. Lety; = 1/2 — ¢;. Then the following
upper bound holds on the error of the final hypothesis Ain:

|{z’:hﬁn(:;‘lz')¢yi}| < (k—l)ﬁ\/m
(k-1 ep (—22%2)

where k isthe number of classes.

A
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3 BOOSTING AND BAGGING

In this section, we describe our experiments comparing
boosting and bagging on the UCI benchmarks.

We first mention briefly a small implementation issue:
Many learning algorithms can be modified to handle ex-
amples that are weighted by a distribution such as the one
created by the boosting agorithm. When this is possi-
ble, the booster’s distribution D, is supplied directly to the
weak learning agorithm, a method we call boosting by
reweighting. However, some learning agorithms require
an unweighted set of examples. For such a weak learn-
ing agorithm, we instead choose a set of examples from S
independently at random according to the distribution D,
with replacement. The number of examples to be chosen
on each round isa matter of discretion; in our experiments,
we chose m examples on each round, where m isthe size
of the origind training set S. We refer to this method as
boosting by resampling.

Boosting by resampling is also possible when using the
pseudo-loss. Inthiscase, aset of midabelsare chosen from
the set B of al midabel swith replacement according to the
given distribution D;. Such a procedureis consistent with
the interpretation of mislabels discussed in Section 2.2. In
our experiments, we choseasampleof size|B| = m(k—1)
on each round when using the resampling method.

31 THEWEAK LEARNING ALGORITHMS

Asmentioned intheintroduction, we used threewesk |earn-
ing agorithmsin these experiments. In al cases, the exam-
ples are described by a vector of vaues which corresponds
to afixed set of features or attributes. These values may
be discrete or continuous. Some of the examples may have
missing values. All three of the weak learners build hy-
potheses which classify examples by repeatedly testing the
values of chosen attributes.

The first and simplest weak learner, which we call
FindAttrTest, searches for the single attribute-value test



# examples # # attributes missing
name train | test | classes | disc. | cont. | values
soybean-small 47 - 4 35 - -
labor 57 2 8 8 X
promoters 106 2 57 - -
iris 150 3 - 4 -
hepatitis 155 2 13 6 X
sonar 208 2 - 60 -
glass 214 7 - 9 -
audiology.stand 226 24 69 - X
cleve 303 - 2 7 6 X
soybean-large 307 376 19 35 - X
ionosphere 351 - 2 - 34 -
house-votes-84 435 2 16 - X
votes1 435 2 15 - X
crx 690 2 9 6 X
breast-cancer-w 699 2 - 9 X
pima-indians-di 768 2 8 -
vehicle 846 - 4 - 18 -
vowel 528 462 11 - 10 -
german 1000 - 2 13 7 -
segmentation 2310 7 - 19 -
hypothyroid 3163 2 18 7 X
sick-euthyroid 3163 2 18 7 X
splice 3190 3 60 - -
kr-vs-kp 3196 - 2 36 -
satimage 4435 2000 6 - 36
agaricus-lepiot 8124 - 2 22 -
letter-recognit 16000 4000 26 - 16

Table 1: The benchmark machine learning problems used in the
experiments.

with minimum error (or pseudo-loss) on the training set.
More precisely, FindAttr Test computes a classifier which
is defined by an attribute a, avalue v and three predictions
po, p1 and p,. This classifier classifies a new example «
as follows: if the value of attribute a is missing on z, then
predict p»; if atributea isdiscrete and itsvalue on example
z isequa to v, or if attribute a is continuous and its value
on z isat most v, then predict po; otherwise predict p;. If
using ordinary error (AdaBoost.M 1), these “predictions”
po, p1, p> would be simple classifications; for pseudo-loss,
the“ predictions’ would be vectorsin [0, 1]* (where k isthe
number of classes).

The algorithm FindAttr Test searches exhaustively for
theclassifier of theform given above with minimumerror or
pseudo-losswith respect to the distribution provided by the
booster. Inother words, all possiblevauesof a, v, pg, p1 and
poareconsidered. With some preprocessing, thissearch can
becarried out for the error-basedimplementationin O(nm)
time, where n isthe number of attributesand m the number
of examples. Asistypicd, the pseudo-lossimplementation
adds afactor of O(k) where k isthe number of class |abels.

For this algorithm, we used boosting with reweighting.

The second weak |earner does a somewhat more sophis-
ticated search for a decision rulethat tests on a conjunction
of attribute-value tests. We sketch the main ideas of this
algorithm, which we call FindDecRule, but omit some of
the finer details for lack of space. These details will be
provided in the full paper.

First, theagorithm requires an unweighted training set,
so we use the resampling version of boosting. The given
training set is randomly divided into a growing set using
70% of the data, and a pruning set with the remaining 30%.

boosting FindAttrTest boosting FindDecRule bagging FindAttrTest  bagging FindDecRule

0 20 40 60 8 0

20 40 60 8 0 20 40 60 8 0 20 40 60 80

pseudo-loss

Figure 3: Comparison of using pseudo-lossversus ordinary error
on multi-class problems for boosting and bagging.

In the first phase, the growing set is used to grow a list of
attribute-valuetests. Each test compares an attributea to a
value v, smilar to the tests used by FindAttr Test. We use
an entropy-based potential function to guide the growth of
the list of tests. Thelist isinitially empty, and one test is
added at atime, each time choosing the test that will cause
the greatest drop in potential. After thetest is chosen, only
onebranch isexpanded, namely, the branch withthe highest
remaining potential. The list continuesto be grown in this
fashion until no test remains which will further reduce the
potential.

In the second phase, the list is pruned by selecting the
prefix of the list with minimum error (or pseudo-loss) on
the pruning set.

The third weak learner is Quinlan’s C4.5 decision-tree
algorithm[18]. Weused al thedefault optionswith pruning
turned on. Since C4.5 expects an unweighted training sam-
ple, we used resampling. Also, we did not attempt to use
AdaBoost.M2 since C4.5 is designed to minimize error,
not pseudo-loss. Furthermore, we did not expect pseudo-
loss to be hel pful when using aweak learning algorithm as
strong as C4.5, since such an algorithmwill usually be able
to find ahypothesiswith error less than 1/2.

3.2 BAGGING

We compared boosting to Breiman’s [1] “bootstrap aggre-
gating” or “bagging” method for training and combining
multiple copies of alearning algorithm. Briefly, themethod
works by training each copy of thea gorithm on abootstrap
sample, i.e., asampleof sizem chosen uniformly at random
with replacement from the original training set S (of size
m). The multiple hypotheses that are computed are then
combined using simple voting; that is, the fina composite
hypothesis classifies an example = to the class most often
assigned by the underlying “weak” hypotheses. See his
paper for more details. The method can be quite effective,
especidly, according to Breiman, for “unstable’ learning
algorithms for which a smal change in the data effects a
large change in the computed hypothesis.

In order to compare AdaBoost.M 2, which uses pseudo-
loss, to bagging, we aso extended bagging in a natura
way for use with aweak learning a gorithm that minimizes
pseudo-loss rather than ordinary error. As described in
Section 2.2, such aweak learning algorithm expects to be
provided with adistribution over the set B of al mislabels.
On each round of bagging, we construct this distribution
using the bootstrap method; that is, we select | B| mislabels
from B (chosen uniformly at random with replacement),
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Figure 4: Comparison of boosting and bagging for each of the
weak |earners.

and assign each mislabdl weight 1/| B| times the number of
times it was chosen. The hypotheses h; computed in this
manner are then combined using votinginanatural manner;

namely, given z, the combined hypothesis outputsthe | abel

y which maximizes ), hy(z,y).

For either error or pseudo-loss, the differences between
bagging and boosting can be summarized as follows: (1)
bagging awaysusesresampling rather than reweighting; (2)
bagging does not modify the distribution over examples or
mislabels, but instead aways uses the uniform distribution;
and (3) informing thefina hypothesis, bagging gives equa
weight to each of the wesak hypotheses.

3.3 THE EXPERIMENTS

We conducted our experiments on a collection of machine
learning datasets availablefrom therepository at University
of Californiaat Irvine.3 A summary of some of the proper-
ties of these datasetsisgiven in Table 1. Some datasets are
provided with atest set. For these, we reran each agorithm
20 times (since some of the algorithms are randomized),
and averaged theresults. For datasets with no provided test
set, we used 10-fold cross validation, and averaged the re-
sultsover 10 runs (for atotal of 100 runs of each algorithm
on each dataset).

In al our experiments, we set the number of rounds of
boosting or bagging to be 7" = 100.

34 RESULTSAND DISCUSSION

The results of our experiments are shown in Table 2.
The figures indicate test error rate averaged over mul-
tiple runs of each agorithm. Columns indicate which
weak learning agorithm was used, and whether pseudo-
loss (AdaBoost.M2) or error (AdaBoost.M 1) was used.
Note that pseudo-loss was not used on any two-class prob-
lems since the resulting algorithm would be identical to the
corresponding error-based a gorithm. Columnslabeled “—"
indicate that theweak |earning algorithmwas used by itself
(with no boosting or bagging). Columns using boosting or
bagging are marked “boost” and “bag,” respectively.

One of our goalsin carrying out these experiments was
to determine if boosting using pseudo-loss (rather than er-
ror) is worthwhile. Figure 3 shows how the different al-
gorithms performed on each of the many-class (k > 2)
problems using pseudo-loss versus error. Each point in the
scatter plot representstheerror achieved by thetwo compet-
ing algorithms on a given benchmark, so there is one point
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Figure 5: Comparison of C4.5 versus various other boosting and

bagging methods.

for each benchmark. These experimentsindicatethat boost-
ing using pseudo-loss clearly outperforms boosting using
error. Using pseudo-loss did dramatically better than error
on every non-binary problem (except it did dightly worse
on “iris’ with three classes). Because AdaBoost.M2 did
so much better than AdaBoost.M 1, we will only discuss
AdaBoost.M 2 henceforth.

As the figure shows, using pseudo-loss with bagging
gave mixed resultsin comparison to ordinary error. Over-
all, pseudo-loss gave better results, but occasionally, using
pseudo-loss hurt considerably.

Figure 4 shows similar scatterplots comparing the per-
formance of boosting and bagging for al the benchmarks
and all three weak learner. For boosting, we plotted the er-
ror rate achieved using pseudo-loss. To present bagging in
the best possiblelight, we used the error rate achieved using
either error or pseudo-loss, whichever gave the better result
on that particular benchmark. (For the binary problems,
and experiments with C4.5, only error was used.)

For the simpler wesk learning agorithms (FindAttr-
Test and FindDecRule), boosting did significantly and uni-
formly better than bagging. The boosting error rate was
worse than the bagging error rate (using either pseudo-loss
or error) on avery small number of benchmark problems,
and onthese, thedifferencein performance was quitesmall.
On average, for FindAttr Test, boosting improved theerror
rate over using FindAttr Test alone by 55.2%, compared to
bagging which gave an improvement of only 11.0% using
pseudo-loss or 8.4% using error. For FindDecRule, boost-
ing improved the error rate by 53.0%, bagging by only
18.8% using pseudo-loss, 13.1% using error.

When using C4.5 astheweak learning algorithm, boost-
ing and bagging seem more evenly matched, athough
boosting still seems to have a dight advantage. On av-
erage, boosting improved the error rate by 24.8%, bagging
by 20.0%. Boosting beat bagging by more than 2% on 6 of
the benchmarks, whilebagging did not beat boostingby this
amount on any benchmark. For the remaining 20 bench-
marks, the difference in performance was less than 2%.

Figure5 showsinasimilar manner how C4.5 performed
compared to bagging with C4.5, and compared to boosting
with each of the weak learners (using pseudo-loss for the
non-binary problems). Asthe figure shows, using boosting
with FindAttrTest does quite well as alearning algorithm
in its own right, in comparison to C4.5. This agorithm
beat C4.5 on 10 of the benchmarks (by at least 2%), tied
on 14, and lost on 3. As mentioned above, its average
performance relative to using FindAttrTest by itself was
55.2%. In comparison, C4.5'simprovement in performance



FindAttr Test FindDecRule C45
error pseudo-loss error pseudo-loss error
name - | boost | bag | boost | bag - | boost | bag | boost | bag - | boost | bag
soybean-small 576 564 487 02 205 | 51.8 560 457 0.4 29 22 34 22
labor 25.1 88 191 24.0 73 146 158 131 113
promoters 29.7 89 166 25.9 83 137 22.0 50 127
iris 35.2 47 284 4.8 71 | 383 43 188 4.8 55 5.9 5.0 5.0
hepatitis 19.7 186 168 216 180 201 212 163 175
sonar 259 165 259 314 162 261 289 190 243
glass 515 511 509 294 542 | 497 485 472 250 520 | 31.7 227 257
audiology.stand 535 535 535 236 657 | 535 535 535 199 657 | 231 16.2 201
cleve 278 188 224 274 197 203 266 217 209
soybean-large 648 645 59.0 98 742 | 736 736 73.6 72 660 | 133 68 122
ionosphere 17.8 85 173 10.3 6.6 9.3 8.9 5.8 6.2
house-votes-84 44 37 4.4 5.0 4.4 4.4 35 5.1 3.6
votes1 12.7 89 127 13.2 94 112 103 104 9.2
crx 145 144 145 145 135 145 158 138 136
breast-cancer-w 8.4 44 6.7 8.1 4.1 53 5.0 33 32
pima-indians-di 261 244 261 278 253 264 284 257 244
vehicle 643 644 576 261 561 | 61.3 612 61.0 250 543 | 299 226 261
vowel 818 818 768 182 747 | 820 727 716 65 632 22 0.0 0.0
german 300 249 304 300 254 296 294 250 246
segmentation 758 758 545 42 725 | 737 533 543 24 580 3.6 1.4 2.7
hypothyroid 22 1.0 22 0.8 1.0 0.7 0.8 1.0 0.8
sick-euthyroid 5.6 3.0 56 24 24 22 2.2 241 2.1
splice 37.0 92 356 44 334 | 295 80 295 40 295 5.8 4.9 5.2
kr-vs-kp 32.8 44 307 24.6 07 208 0.5 0.3 0.6
satimage 583 583 583 149 416 | 576 565 567 131 300 | 148 89 106
agaricus-lepiot 11.3 00 113 8.2 0.0 8.2 0.0 0.0 0.0
letter-recognit 929 929 919 341 937 | 923 918 918 304 937 | 138 3.3 6.8

Table 2: Test error rates of various algorithms on benchmark problems.

over FindAttr Test was 49.3%.

Using boosting with FindDecRule did somewhat bet-
ter. The win-tie-lose numbersfor thisalgorithm (compared
to C4.5) were 13-12-2, and its average improvement over
FindAttr Test was 58.1%.

4 BOOSTING A NEAREST-NEIGHBOR
CLASSIFIER

In this section we study the performance of alearning al-
gorithm which combines AdaBoost and a variant of the
nearest-neighbor classifier. Wetest thecombined algorithm
on the problem of recognizing handwritten digits. Our goal
is not to improve on the accuracy of the nearest neighbor
classifier, but rather to speed it up. Speed-up isachieved by
reducing the number of prototypes in the hypothesis (and
thus the required number of distance cal culations) without
increasing the error rate. It isasimilar approach to that of
nearest-neighbor editing [12, 13] in which onetriesto find
the minimal set of prototypes that is sufficient to label all
thetraining set correctly.

The dataset comes from the US Postal Service (USPS)
and consists of 9709 training examples and 2007 test exam-
ples. The training and test examples are evidently drawn
from rather different distributionsas there is a very signifi-
cant improvement in the performance if the partition of the
datainto training and testing is done at random (rather than
using the given partition). We report results both on the
origina partitioning and on a training set and a test set of
the same sizesthat were generated by randomly partitioning
the union of the origind training and test sets.

Each image isrepresented by a 16 x 16-matrix of 8-bit
pixels. The metric that we use for identifying the near-
est neighbor, and hence for classifying an instance, is the

standard Euclidean distance between the images (viewed
as vectors in R%*°). This is a very naive metric, but it
gives reasonably good performance. A nearest-neighbor
classifier which uses all thetraining examples as prototypes
achieves atest error of 5.7% (2.3% on randomly partitioned
data). Using the more sophisticated tangent distance [21]
isin our future plans.

Each weak hypothesisis defined by a subset P of the
training examples, and amapping = : P — [0, 1]*. Givena
new test point z, such aweak hypothesispredictsthe vector
7 (xo) Where zg € P istheclosest point to .

On each round of boosting, aweak hypothesisis gener-
ated by adding one prototype at atimeto the set P until the
set reaches a prespecified size. Given any set P, we aways
choose the mapping = which minimizes the pseudo-loss
of the resulting weak hypothesis (with respect to the given
mislabel distribution).

Initialy, the set of prototypes P is empty. Next, ten
candidate prototypes are selected at random according to
the current (marginal) distribution over the training exam-
ples. Of these candidates, the one that causes the largest
decrease in the pseudo-loss is added to the set P, and the
process is repeated. The boosting process thus influences
theweak learning algorithmintwoways: first, by changing
the way the ten random examples are sel ected, and second
by changing the cal culation of the pseudo-loss.

It often happens that, on the following round of boost-
ing, the same set P will have pseudo-loss significantly less
than 1/2 with respect to the new mislabel distribution (but
possibly using a different mapping «). In this case, rather
than choosing a new set of prototypes, we reuse the same
set P in additiona boosting steps until the advantage that
can be gained from the given partition is exhausted (details
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Figure 6: A sample of the examplesthat have the largest weight
after 3 of the 30 boosting iterations. The first line is after itera-
tion 4, the second after iteration 12 and the third after iteration 25.
Underneath eachimagewe havealine of theform d:£1/w1,2/ws,
where d is the label of the example, £1 and £, are the labels that
get the highest and second highest vote from the combined hy-
pothesis at that point in the run of the algorithm, and w1, w; are
the corresponding normalized votes.

omitted).

We ran 30 iterations of the boosting algorithm, and
the number of prototypes we used were 10 for the first
weak hypothesis, 20 for the second, 40 for the third, 80 for
the next five, and 100 for the remaining twenty-two weak
hypotheses. These sizes were chosen so that the errors of
all of the weak hypotheses are approximately equal.

We compared the performance of our algorithm to a
strawman a gorithm which uses a single set of prototypes.
Similar to our algorithm, the prototype set is generated in-
crementally, comparing ten prototype candidates at each
step, and aways choosing the one that minimizes the em-
pirical error. We compared the performance of the boosting
algorithm to that of the strawman hypothesis that uses the
same number of prototypes. We also compared our per-
formance to that of the condensed nearest neighbor rule
(CNN) [13], a greedy method for finding a small set of
prototypes which correctly classify the entire training set.

41 RESULTSAND DISCUSSION

The results of our experiments are summarized in Ta
ble 3 and Figure 7. Table 3 describes the results from ex-
periments with AdaBoost (each experiment was repeated
10 times using different random seeds), the strawman al-
gorithm (each repeated 7 times) , and CNN (7 times). We
compare theresultsusing arandom partition of thedatainto
training and testing and using the partition that was defined
by USPS.

We see that in both cases, after morethan 970 examples,
the training error of AdaBoost is much better than that of
the strawman agorithm. The performance on the test set
is similar, with a dight advantage to AdaBoost when the
hypotheses include more than 1670 examples, but a dight
advantageto strawman if fewer roundsof boosting are used.
After 2670 examples, the error of AdaBoost on therandom
partition is (on average) 2.7%, while the error achieved
by using the whole training set is 2.3%. On the random
partition, the final error is 6.4%, while the error using the
wholetraining set is5.7%.
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Figure 7: Graphs of the performance of the boosting algorithm
on a randomly partitioned USPS dataset. The horizontal axis
indicates the total number of prototypes that were added to the
combined hypothesis, and the vertical axis indicates error. The
topmost jagged line indicates the error of the weak hypothesis
that is trained at this point on the weighted training set. The
bold curve is the bound on the training error calculated using
Theorem 2. The lowest thin curve and the medium-bold curve
show the performance of the combined hypothesison the training
set and test set, respectively.

Comparing to CNN, we see that both the stravman
algorithm and AdaBoost perform better than CNN even
when they use about 900 examples in their hypotheses.
Larger hypotheses generated by AdaBoost or strawman are
much better than that generated by CNN. The main problem
with CNN seems to be its tendency to overfit the training
data. AdaBoost and the strawman algorithm seem to suffer
less from overfitting.

Figure 7 shows atypical run of AdaBoost. The upper-
most jagged lineisaconcatenation of the errors of theweak
hypotheses with respect to the mislabel distribution. Each
peak followed by avalley correspondsto the beginning and
end errors of aweak hypothesisasit is being constructed,
one prototype at atime. The weighted error aways starts
around 50% at the beginning of a boosting iteration and
drops to around 20-30%. The heaviest line describes the
upper bound on thetraining error that isguaranteed by The-
orem 2, and the two bottom lines describe the training and
test error of the final combined hypothesis.

It is interesting that the performance of the boosting
algorithm on the test set improved significantly after the
error on the training set has already become zero. This
is surprising because an “Occam'’s razor” argument would
predict that increasing the complexity of the hypothesis
after the error has been reduced to zero islikely to degrade
the performance on the test set.

Figure 6 shows a sample of the examples that are given
large weights by the boosting algorithm on a typica run.
There seem to be two types of “hard” examples. First are
examples which are very atypical or wrongly labeled (such
as example 2 on the first line and examples 3 and 4 on the
second line). The second type, which tendsto dominate on
later iterations, consists of examples that are very similar
to each other but have different labels (such as examples 3
versus 4 on the third line). Although the algorithm at this
point was correct on all training examples, it is clear from
the votes it assigned to different labels for these example
pairs that it was still trying to improve the discrimination



random partition
AdaBoost ‘ Strawman ‘

CNN AdaBoost ‘ Strawman ‘ CNN

USPS partition

md | size | theory | train | test | train | test | test(size)| theory | train | test | train | test | test(size)
1 10 | 5246 459 461 379 383 536.3 425 431 361 376
5 230 86.4 6.3 85 4.9 6.2 83.0 5.1 12.3 42 106
10 670 16.0 0.4 4.6 2.0 4.3 10.9 0.1 8.6 1.4 8.3
13 970 4.5 0.0 3.9 1.5 3.8 4.4 (990) 3.3 0.0 8.1 1.0 7.7 8.6 (865)

15 | 1170 24 0.0 3.6 1.3 3.6
20 | 1670 0.4 0.0 3.1 0.9 3.3
25 | 2170 0.1 0.0 29 0.7 3.0
30 | 2670 0.0 0.0 27 0.5 2.8

1.5 0.0 77 0.8 75
0.2 0.0 7.0 0.6 741
0.0 0.0 6.7 0.4 6.9
0.0 0.0 6.4 0.3 6.8

Table 3: Averageerror rates ontraining and test sets, in percent. For columnslabeled “random partition,” arandom partition of the union
of the training and test sets wasused; “ USPS partition” meansthe USPS-provided partition into training and test setswas used. Columns
labeled “theory” give theoretical upper bounds on training error calculated using Theorem 2. “Size” indicates number of prototypes

defining the final hypothesis.

between similar examples. This agrees with our intuition
that the pseudo-l ossisamechanism that causes theboosting
algorithm to concentrate on the hard to discriminate labels
of hard examples.

5 CONCLUSIONS

We have demonstrated that AdaBoost can be used in many
settingstoimprovethe performance of alearning algorithm.
When gtarting with relatively simple classifiers, the im-
provement can be especially dramatic, and can often lead to
acompositeclassifier that outperformsmore complex “one-
shot” learning algorithms like C4.5. Thisimprovement is
far greater than can be achieved with bagging. Note, how-
ever, that for non-binary classification problems, boosting
simple classifiers can only be done effectively if the more
sophisticated pseudo-lossis used.

When starting with a complex agorithm like C4.5,
boosting can aso be used to improve performance, but
does not have such a compelling advantage over bagging.
Boosting combined with a complex algorithm may givethe
greatest improvement in performance when thereis area
sonably large amount of data available (note, for instance,
boosting’ sperformance on the* | etter-recognition” problem
with 16,000 training examples). Naturally, one needs to
consider whether theimprovement in error isworth the ad-
ditional computation time. Although we used 100 rounds
of boosting, Quinlan [19] got good results using only 10
rounds.

Boosting may have other applications, besides reducing
the error of a classifier. For instance, we saw in Section 4
that boosting can be used to find a small set of prototypes
for a nearest neighbor classifier.

Asdescribedin theintroduction, boosting combinestwo
effects. It reduces the bias of the weak learner by forcing
the weak learner to concentrate on different parts of the
instance space, and it also reduces the variance of the weak
learner by averaging severa hypothesesthat were generated
from different subsamples of the training set. While there
is good theory to explain the bias reducing effects, there is
need for a better theory of the variance reduction.
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